Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890622067> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2890622067 endingPage "1098" @default.
- W2890622067 startingPage "1083" @default.
- W2890622067 abstract "Businesses, researchers, and policymakers in the agricultural and food sector regularly make use of large public, private, and administrative datasets for prediction, including forecasting, public policy targeting, and management research. Machine learning has the potential to substantially improve prediction with these datasets. In this study we demonstrate and evaluate several machine learning models for predicting demand for new credit with the 2014 Agricultural Resource Management Survey. Many, but not all, of the machine learning models used are shown to have stronger predictive power than standard econometric approaches. We provide a cost based model evaluation approach for managers to analyze returns to machine learning methods relative to standard econometric approaches. While there are potentially significant returns to machine learning methods, research objectives and firm-level costs are important considerations that in some cases may favor standard econometric approaches." @default.
- W2890622067 created "2018-09-27" @default.
- W2890622067 creator A5013670371 @default.
- W2890622067 creator A5036690504 @default.
- W2890622067 creator A5074475132 @default.
- W2890622067 date "2018-12-07" @default.
- W2890622067 modified "2023-10-16" @default.
- W2890622067 title "Can machine learning improve prediction – an application with farm survey data" @default.
- W2890622067 cites W1989066695 @default.
- W2890622067 cites W2046363883 @default.
- W2890622067 cites W2071178652 @default.
- W2890622067 cites W2087936817 @default.
- W2890622067 cites W2097953999 @default.
- W2890622067 cites W2105201700 @default.
- W2890622067 cites W2145278766 @default.
- W2890622067 cites W2207780529 @default.
- W2890622067 cites W2208550830 @default.
- W2890622067 cites W2377046112 @default.
- W2890622067 cites W2536335253 @default.
- W2890622067 cites W2586604920 @default.
- W2890622067 cites W2610886376 @default.
- W2890622067 cites W2790729546 @default.
- W2890622067 doi "https://doi.org/10.22434/ifamr2017.0098" @default.
- W2890622067 hasPublicationYear "2018" @default.
- W2890622067 type Work @default.
- W2890622067 sameAs 2890622067 @default.
- W2890622067 citedByCount "5" @default.
- W2890622067 countsByYear W28906220672021 @default.
- W2890622067 countsByYear W28906220672022 @default.
- W2890622067 crossrefType "journal-article" @default.
- W2890622067 hasAuthorship W2890622067A5013670371 @default.
- W2890622067 hasAuthorship W2890622067A5036690504 @default.
- W2890622067 hasAuthorship W2890622067A5074475132 @default.
- W2890622067 hasBestOaLocation W28906220671 @default.
- W2890622067 hasConcept C111472728 @default.
- W2890622067 hasConcept C118518473 @default.
- W2890622067 hasConcept C119857082 @default.
- W2890622067 hasConcept C138885662 @default.
- W2890622067 hasConcept C149782125 @default.
- W2890622067 hasConcept C154945302 @default.
- W2890622067 hasConcept C162324750 @default.
- W2890622067 hasConcept C180075932 @default.
- W2890622067 hasConcept C18903297 @default.
- W2890622067 hasConcept C2778136018 @default.
- W2890622067 hasConcept C41008148 @default.
- W2890622067 hasConcept C45804977 @default.
- W2890622067 hasConcept C86803240 @default.
- W2890622067 hasConceptScore W2890622067C111472728 @default.
- W2890622067 hasConceptScore W2890622067C118518473 @default.
- W2890622067 hasConceptScore W2890622067C119857082 @default.
- W2890622067 hasConceptScore W2890622067C138885662 @default.
- W2890622067 hasConceptScore W2890622067C149782125 @default.
- W2890622067 hasConceptScore W2890622067C154945302 @default.
- W2890622067 hasConceptScore W2890622067C162324750 @default.
- W2890622067 hasConceptScore W2890622067C180075932 @default.
- W2890622067 hasConceptScore W2890622067C18903297 @default.
- W2890622067 hasConceptScore W2890622067C2778136018 @default.
- W2890622067 hasConceptScore W2890622067C41008148 @default.
- W2890622067 hasConceptScore W2890622067C45804977 @default.
- W2890622067 hasConceptScore W2890622067C86803240 @default.
- W2890622067 hasIssue "8" @default.
- W2890622067 hasLocation W28906220671 @default.
- W2890622067 hasLocation W28906220672 @default.
- W2890622067 hasLocation W28906220673 @default.
- W2890622067 hasOpenAccess W2890622067 @default.
- W2890622067 hasPrimaryLocation W28906220671 @default.
- W2890622067 hasRelatedWork W3088815947 @default.
- W2890622067 hasRelatedWork W3119715496 @default.
- W2890622067 hasRelatedWork W3133294580 @default.
- W2890622067 hasRelatedWork W3150895494 @default.
- W2890622067 hasRelatedWork W3160244858 @default.
- W2890622067 hasRelatedWork W4221031036 @default.
- W2890622067 hasRelatedWork W4223943233 @default.
- W2890622067 hasRelatedWork W4287660321 @default.
- W2890622067 hasRelatedWork W4296925365 @default.
- W2890622067 hasRelatedWork W4312949351 @default.
- W2890622067 hasVolume "21" @default.
- W2890622067 isParatext "false" @default.
- W2890622067 isRetracted "false" @default.
- W2890622067 magId "2890622067" @default.
- W2890622067 workType "article" @default.