Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890623530> ?p ?o ?g. }
- W2890623530 endingPage "588" @default.
- W2890623530 startingPage "565" @default.
- W2890623530 abstract "Hydrogen liquefaction processes have effective function in the hydrogen supply chain. However low efficiency and high liquefaction costs are still the most important concerns about the liquefaction plants. In this study a new configuration for a hydrogen liquefier process is proposed and energy-exergy analyzed. The production rate of the liquid hydrogen (LH2) is 90 tons per day that can supply the required LH2 of at least 90 k-180 k hydrogen vehicles in an urban area that results in the reduction of pollutions caused by carbon dioxide emission. The process is simulated in Aspen HYSYS simulator. In addition, it is optimized thorough a trial and error approach that is a functional and simple method of complicated systems analysis. The process includes a mixed refrigerant (MR) refrigeration cycle that precools feed gas hydrogen from 25°C temperature to −199.9°C temperature. A new MR is used in a cascade Joule-Brayton cycle that deep-cools the low-temperature gaseous hydrogen from −199.9°C temperature to −252.2°C temperature in the cryogenic section of the plant. The novel process involves also an absorption refrigeration system (ARS) that cools some hydrogen streams in the precooling and cryogenic sections of the process. The consumed energy per kilogram of produced LH2 is achieved as 6.47kWh. This quantity is 2.89kWh in the ideal conditions. The exergy efficiency of the plant is evaluated to be 45.5% that is significantly more than the exergy efficiency of the in operating hydrogen liquefiers in the world. The energy analysis reveals that the coefficient of performance (COP) of the overall system is 0.2034. The achieved COP is a higher amount in compare to the other similar processes. A sensitivity analysis is done to show the effect of the various operation conditions of the process on the features of the plant. Accordingly, the optimum mass flow of the ARS is determined as 207kg/s for the proposed configuration. As well as, the effect of the change in the temperature approach of the heat exchangers and the changes in the adiabatic efficiency of the compressors and expanders on the SEC, COP, and the exergy efficiency of the overall plant is discussed. Furthermore, financial analysis of the plant estimates the capital expenditures (CAPEX), energy expenditures (EEX), and operational and maintenance expenditures (OMEX) as 25413 €2000, 7370 €2000, and 2033 €2000 respectively. These can be specially improved be improving of the exergy efficiency of the plant. The results implicates that the proposed configuration has better performance indicators than the in-service liquefiers. Therefore, LHL plant manufacturer can be considered it in the design and development of new plants. As well as, researchers may utilize its operating conditions to improve the proposed processes." @default.
- W2890623530 created "2018-09-27" @default.
- W2890623530 creator A5060191440 @default.
- W2890623530 creator A5067952387 @default.
- W2890623530 date "2018-12-01" @default.
- W2890623530 modified "2023-10-02" @default.
- W2890623530 title "Conceptual design and analysis of a novel process for hydrogen liquefaction assisted by absorption precooling system" @default.
- W2890623530 cites W1620037480 @default.
- W2890623530 cites W1620610886 @default.
- W2890623530 cites W1975007437 @default.
- W2890623530 cites W1977411150 @default.
- W2890623530 cites W1978879735 @default.
- W2890623530 cites W1981194482 @default.
- W2890623530 cites W1985751494 @default.
- W2890623530 cites W1996328701 @default.
- W2890623530 cites W2005949282 @default.
- W2890623530 cites W2005979582 @default.
- W2890623530 cites W2009080181 @default.
- W2890623530 cites W2013419488 @default.
- W2890623530 cites W2022765454 @default.
- W2890623530 cites W2032290437 @default.
- W2890623530 cites W2036109178 @default.
- W2890623530 cites W2039272298 @default.
- W2890623530 cites W2040544408 @default.
- W2890623530 cites W2044976828 @default.
- W2890623530 cites W2051134327 @default.
- W2890623530 cites W2057578266 @default.
- W2890623530 cites W2065301760 @default.
- W2890623530 cites W2068987330 @default.
- W2890623530 cites W2069800711 @default.
- W2890623530 cites W2072661717 @default.
- W2890623530 cites W2074729340 @default.
- W2890623530 cites W2080468549 @default.
- W2890623530 cites W2087544439 @default.
- W2890623530 cites W2233065044 @default.
- W2890623530 cites W2285185817 @default.
- W2890623530 cites W2336115847 @default.
- W2890623530 cites W2354946103 @default.
- W2890623530 cites W2415921300 @default.
- W2890623530 cites W2473168905 @default.
- W2890623530 cites W2557197612 @default.
- W2890623530 cites W2559889812 @default.
- W2890623530 cites W2568765937 @default.
- W2890623530 cites W2569996227 @default.
- W2890623530 cites W2587013377 @default.
- W2890623530 cites W2587279559 @default.
- W2890623530 cites W2611050327 @default.
- W2890623530 cites W2617771309 @default.
- W2890623530 cites W2734722135 @default.
- W2890623530 cites W2747225028 @default.
- W2890623530 cites W2773361513 @default.
- W2890623530 cites W2778752948 @default.
- W2890623530 cites W2791714045 @default.
- W2890623530 cites W2804040643 @default.
- W2890623530 cites W2884223982 @default.
- W2890623530 cites W3124451580 @default.
- W2890623530 cites W3200714963 @default.
- W2890623530 cites W90651594 @default.
- W2890623530 cites W956439354 @default.
- W2890623530 doi "https://doi.org/10.1016/j.jclepro.2018.09.001" @default.
- W2890623530 hasPublicationYear "2018" @default.
- W2890623530 type Work @default.
- W2890623530 sameAs 2890623530 @default.
- W2890623530 citedByCount "49" @default.
- W2890623530 countsByYear W28906235302019 @default.
- W2890623530 countsByYear W28906235302020 @default.
- W2890623530 countsByYear W28906235302021 @default.
- W2890623530 countsByYear W28906235302022 @default.
- W2890623530 countsByYear W28906235302023 @default.
- W2890623530 crossrefType "journal-article" @default.
- W2890623530 hasAuthorship W2890623530A5060191440 @default.
- W2890623530 hasAuthorship W2890623530A5067952387 @default.
- W2890623530 hasConcept C107706546 @default.
- W2890623530 hasConcept C113146524 @default.
- W2890623530 hasConcept C116915560 @default.
- W2890623530 hasConcept C121332964 @default.
- W2890623530 hasConcept C127413603 @default.
- W2890623530 hasConcept C178790620 @default.
- W2890623530 hasConcept C185592680 @default.
- W2890623530 hasConcept C191859794 @default.
- W2890623530 hasConcept C192562407 @default.
- W2890623530 hasConcept C199499590 @default.
- W2890623530 hasConcept C21880701 @default.
- W2890623530 hasConcept C2779398823 @default.
- W2890623530 hasConcept C30487094 @default.
- W2890623530 hasConcept C39432304 @default.
- W2890623530 hasConcept C512968161 @default.
- W2890623530 hasConcept C548081761 @default.
- W2890623530 hasConcept C69907114 @default.
- W2890623530 hasConcept C83119724 @default.
- W2890623530 hasConcept C97355855 @default.
- W2890623530 hasConceptScore W2890623530C107706546 @default.
- W2890623530 hasConceptScore W2890623530C113146524 @default.
- W2890623530 hasConceptScore W2890623530C116915560 @default.
- W2890623530 hasConceptScore W2890623530C121332964 @default.
- W2890623530 hasConceptScore W2890623530C127413603 @default.
- W2890623530 hasConceptScore W2890623530C178790620 @default.
- W2890623530 hasConceptScore W2890623530C185592680 @default.