Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890623737> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2890623737 endingPage "68" @default.
- W2890623737 startingPage "55" @default.
- W2890623737 abstract "Text sentiment analysis is used to discover the public’s appreciation and preferences for specific events. In order to effectively extract the deep semantic features of sentences and reduce the dependence of long distance information dependency, two models based on convolutional neural network and bidirectional long short-term memory model, CNN-BLSTM and BLSTM-CNN are proposed. Convolutional neural networks can get text features better. Bidirectional long-short time memory model can not only capture long-range information and solve gradient attenuation problem, but also represent future contextual information semantics of word sequence better. These two network architectures are explained in detail in this paper, and performed comparisons against some normal methods, such as methods based emotion lexicon, machine learning methods, LSTM and other neural network models. Experiments show that these two proposed models have achieved better results in text sentiment analysis. The best model CNN-BLSTM is better than the normal neural network models in accuracy." @default.
- W2890623737 created "2018-09-27" @default.
- W2890623737 creator A5015477789 @default.
- W2890623737 creator A5017905330 @default.
- W2890623737 creator A5037909738 @default.
- W2890623737 creator A5086533374 @default.
- W2890623737 date "2018-01-01" @default.
- W2890623737 modified "2023-09-27" @default.
- W2890623737 title "Text Sentiment Analysis Based on Convolutional Neural Network and Bidirectional LSTM Model" @default.
- W2890623737 cites W1662133657 @default.
- W2890623737 cites W1832693441 @default.
- W2890623737 cites W2064675550 @default.
- W2890623737 cites W2101196063 @default.
- W2890623737 cites W2106346128 @default.
- W2890623737 cites W2116360511 @default.
- W2890623737 cites W2131774270 @default.
- W2890623737 cites W2166706824 @default.
- W2890623737 cites W2250962852 @default.
- W2890623737 cites W2250966211 @default.
- W2890623737 cites W2339652278 @default.
- W2890623737 cites W2402268235 @default.
- W2890623737 cites W2787893582 @default.
- W2890623737 cites W2962902328 @default.
- W2890623737 doi "https://doi.org/10.1007/978-981-13-2206-8_6" @default.
- W2890623737 hasPublicationYear "2018" @default.
- W2890623737 type Work @default.
- W2890623737 sameAs 2890623737 @default.
- W2890623737 citedByCount "8" @default.
- W2890623737 countsByYear W28906237372020 @default.
- W2890623737 countsByYear W28906237372021 @default.
- W2890623737 countsByYear W28906237372022 @default.
- W2890623737 crossrefType "book-chapter" @default.
- W2890623737 hasAuthorship W2890623737A5015477789 @default.
- W2890623737 hasAuthorship W2890623737A5017905330 @default.
- W2890623737 hasAuthorship W2890623737A5037909738 @default.
- W2890623737 hasAuthorship W2890623737A5086533374 @default.
- W2890623737 hasConcept C108583219 @default.
- W2890623737 hasConcept C147168706 @default.
- W2890623737 hasConcept C154945302 @default.
- W2890623737 hasConcept C184337299 @default.
- W2890623737 hasConcept C19768560 @default.
- W2890623737 hasConcept C199360897 @default.
- W2890623737 hasConcept C204321447 @default.
- W2890623737 hasConcept C2778121359 @default.
- W2890623737 hasConcept C41008148 @default.
- W2890623737 hasConcept C50644808 @default.
- W2890623737 hasConcept C66402592 @default.
- W2890623737 hasConcept C81363708 @default.
- W2890623737 hasConceptScore W2890623737C108583219 @default.
- W2890623737 hasConceptScore W2890623737C147168706 @default.
- W2890623737 hasConceptScore W2890623737C154945302 @default.
- W2890623737 hasConceptScore W2890623737C184337299 @default.
- W2890623737 hasConceptScore W2890623737C19768560 @default.
- W2890623737 hasConceptScore W2890623737C199360897 @default.
- W2890623737 hasConceptScore W2890623737C204321447 @default.
- W2890623737 hasConceptScore W2890623737C2778121359 @default.
- W2890623737 hasConceptScore W2890623737C41008148 @default.
- W2890623737 hasConceptScore W2890623737C50644808 @default.
- W2890623737 hasConceptScore W2890623737C66402592 @default.
- W2890623737 hasConceptScore W2890623737C81363708 @default.
- W2890623737 hasLocation W28906237371 @default.
- W2890623737 hasOpenAccess W2890623737 @default.
- W2890623737 hasPrimaryLocation W28906237371 @default.
- W2890623737 hasRelatedWork W2061629646 @default.
- W2890623737 hasRelatedWork W2460358857 @default.
- W2890623737 hasRelatedWork W2626085219 @default.
- W2890623737 hasRelatedWork W2732626551 @default.
- W2890623737 hasRelatedWork W2795209768 @default.
- W2890623737 hasRelatedWork W2901590103 @default.
- W2890623737 hasRelatedWork W3027466640 @default.
- W2890623737 hasRelatedWork W3192794374 @default.
- W2890623737 hasRelatedWork W81664735 @default.
- W2890623737 hasRelatedWork W170336009 @default.
- W2890623737 isParatext "false" @default.
- W2890623737 isRetracted "false" @default.
- W2890623737 magId "2890623737" @default.
- W2890623737 workType "book-chapter" @default.