Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890626570> ?p ?o ?g. }
- W2890626570 endingPage "2384" @default.
- W2890626570 startingPage "2384" @default.
- W2890626570 abstract "The practice of medicine is ever evolving. Diagnosing disease, which is often the first step in a cure, has seen a sea change from the discerning hands of the neighborhood physician to the use of sophisticated machines to use of information gleaned from biomarkers obtained by the most minimally invasive of means. The last 100 or so years have borne witness to the enormous success story of allopathy, a practice that found favor over earlier practices of medical purgatory and homeopathy. Nevertheless, failures of this approach coupled with the omics and bioinformatics revolution spurred precision medicine, a platform wherein the molecular profile of an individual patient drives the selection of therapy. Indeed, precision medicine-based therapies that first found their place in oncology are rapidly finding uses in autoimmune, renal and other diseases. More recently a new renaissance that is shaping everyday life is making its way into healthcare. Drug discovery and medicine that started with Ayurveda in India are now benefiting from an altogether different artificial intelligence (AI)—one which is automating the invention of new chemical entities and the mining of large databases in health-privacy-protected vaults. Indeed, disciplines as diverse as language, neurophysiology, chemistry, toxicology, biostatistics, medicine and computing have come together to harness algorithms based on transfer learning and recurrent neural networks to design novel drug candidates, a priori inform on their safety, metabolism and clearance, and engineer their delivery but only on demand, all the while cataloging and comparing omics signatures across traditionally classified diseases to enable basket treatment strategies. This review highlights inroads made and being made in directed-drug design and molecular therapy." @default.
- W2890626570 created "2018-09-27" @default.
- W2890626570 creator A5018130237 @default.
- W2890626570 creator A5019700285 @default.
- W2890626570 creator A5029666564 @default.
- W2890626570 creator A5036419829 @default.
- W2890626570 creator A5038476401 @default.
- W2890626570 creator A5047497707 @default.
- W2890626570 creator A5050286207 @default.
- W2890626570 creator A5051729174 @default.
- W2890626570 creator A5071619668 @default.
- W2890626570 creator A5075056018 @default.
- W2890626570 creator A5091583711 @default.
- W2890626570 date "2018-09-18" @default.
- W2890626570 modified "2023-10-05" @default.
- W2890626570 title "Deep Learning in Drug Discovery and Medicine; Scratching the Surface" @default.
- W2890626570 cites W1019830208 @default.
- W2890626570 cites W1030653963 @default.
- W2890626570 cites W1849446486 @default.
- W2890626570 cites W1857249443 @default.
- W2890626570 cites W1968217711 @default.
- W2890626570 cites W1968568016 @default.
- W2890626570 cites W1975241491 @default.
- W2890626570 cites W1987380823 @default.
- W2890626570 cites W1989696433 @default.
- W2890626570 cites W1991858306 @default.
- W2890626570 cites W1992627136 @default.
- W2890626570 cites W2016202595 @default.
- W2890626570 cites W2017394727 @default.
- W2890626570 cites W2017592183 @default.
- W2890626570 cites W2022346538 @default.
- W2890626570 cites W2024651005 @default.
- W2890626570 cites W2029287885 @default.
- W2890626570 cites W2039267791 @default.
- W2890626570 cites W2042445733 @default.
- W2890626570 cites W2051941381 @default.
- W2890626570 cites W2052562387 @default.
- W2890626570 cites W2057846163 @default.
- W2890626570 cites W2058812423 @default.
- W2890626570 cites W2059699217 @default.
- W2890626570 cites W2060427373 @default.
- W2890626570 cites W2075746068 @default.
- W2890626570 cites W2076208069 @default.
- W2890626570 cites W2083535257 @default.
- W2890626570 cites W2089501953 @default.
- W2890626570 cites W2094036688 @default.
- W2890626570 cites W2097220641 @default.
- W2890626570 cites W2121175754 @default.
- W2890626570 cites W2127230663 @default.
- W2890626570 cites W2132082217 @default.
- W2890626570 cites W2146680390 @default.
- W2890626570 cites W2149379768 @default.
- W2890626570 cites W2151382894 @default.
- W2890626570 cites W2153550523 @default.
- W2890626570 cites W2155844132 @default.
- W2890626570 cites W2161161964 @default.
- W2890626570 cites W2165037318 @default.
- W2890626570 cites W2165431421 @default.
- W2890626570 cites W2165698076 @default.
- W2890626570 cites W2167967077 @default.
- W2890626570 cites W2171111703 @default.
- W2890626570 cites W2171756499 @default.
- W2890626570 cites W2171808845 @default.
- W2890626570 cites W2187452737 @default.
- W2890626570 cites W2213443318 @default.
- W2890626570 cites W2259938310 @default.
- W2890626570 cites W2287058098 @default.
- W2890626570 cites W2312094169 @default.
- W2890626570 cites W2320964154 @default.
- W2890626570 cites W2417620235 @default.
- W2890626570 cites W2519252136 @default.
- W2890626570 cites W2578240541 @default.
- W2890626570 cites W2610148085 @default.
- W2890626570 cites W2766049664 @default.
- W2890626570 cites W2784270883 @default.
- W2890626570 cites W2790808809 @default.
- W2890626570 cites W2806106355 @default.
- W2890626570 cites W2963445908 @default.
- W2890626570 cites W2978737563 @default.
- W2890626570 cites W3124353295 @default.
- W2890626570 cites W402335930 @default.
- W2890626570 doi "https://doi.org/10.3390/molecules23092384" @default.
- W2890626570 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6225282" @default.
- W2890626570 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30231499" @default.
- W2890626570 hasPublicationYear "2018" @default.
- W2890626570 type Work @default.
- W2890626570 sameAs 2890626570 @default.
- W2890626570 citedByCount "64" @default.
- W2890626570 countsByYear W28906265702019 @default.
- W2890626570 countsByYear W28906265702020 @default.
- W2890626570 countsByYear W28906265702021 @default.
- W2890626570 countsByYear W28906265702022 @default.
- W2890626570 countsByYear W28906265702023 @default.
- W2890626570 crossrefType "journal-article" @default.
- W2890626570 hasAuthorship W2890626570A5018130237 @default.
- W2890626570 hasAuthorship W2890626570A5019700285 @default.
- W2890626570 hasAuthorship W2890626570A5029666564 @default.
- W2890626570 hasAuthorship W2890626570A5036419829 @default.