Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890678642> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2890678642 abstract "A malarial infection is diagnosed and monitored by screening microscope images of blood smears for parasite-infected red blood cells. Millions of blood slides are manually screened for parasites every year, which is a tedious and error-prone process, and which largely depends on the expertise of the microscopists. We have developed a software to perform this task on a smartphone, using machine learning and image analysis methods for counting infected red blood cells automatically. The method we implemented first needs to detect and segment red blood cells. However, the presence of white blood cells (WBCs) contaminates the red blood cell detection and segmentation process because WBCs can be miscounted as red blood cells by automatic cell detection methods. As a result, a preprocessing step for WBC elimination is essential. Our paper proposes a novel method for white blood cell segmentation in microscopic images of blood smears. First, a range filtering algorithm is used to specify the location of white blood cells in the image following a Chan- Vese level-set algorithm to estimate the boundaries of each white blood cell present in the image. The proposed segmentation algorithm is systematically tested on a database of more than 1300 thin blood smear images exhibiting approximately 1350 WBCs. We evaluate the performance of the proposed method for the two WBC detection and WBC segmentation steps by comparing the annotations provided by a human expert with the results produced by the proposed algorithm. Our detection technique achieves a 96.37 % overall precision, 98.37 % recall, and 97.36 % Fl-score. The proposed segmentation method grants an overall 82.28 % Jaccard Similarity Index. These results demonstrate that our approach allows us to filter out WBCs, which significantly improves the precision of the cell counts for malaria diagnosis." @default.
- W2890678642 created "2018-09-27" @default.
- W2890678642 creator A5006115428 @default.
- W2890678642 creator A5023906269 @default.
- W2890678642 creator A5027593265 @default.
- W2890678642 creator A5033152251 @default.
- W2890678642 creator A5035100758 @default.
- W2890678642 creator A5058484144 @default.
- W2890678642 creator A5062163327 @default.
- W2890678642 creator A5066244246 @default.
- W2890678642 creator A5073995883 @default.
- W2890678642 creator A5074891005 @default.
- W2890678642 date "2017-10-01" @default.
- W2890678642 modified "2023-09-26" @default.
- W2890678642 title "Detecting and Segmenting White Blood Cells in Microscopy Images of Thin Blood Smears" @default.
- W2890678642 cites W1608047833 @default.
- W2890678642 cites W1791011331 @default.
- W2890678642 cites W2080860745 @default.
- W2890678642 cites W2116040950 @default.
- W2890678642 cites W2160094774 @default.
- W2890678642 cites W2167809092 @default.
- W2890678642 cites W2397580507 @default.
- W2890678642 cites W2402659155 @default.
- W2890678642 doi "https://doi.org/10.1109/aipr.2017.8457970" @default.
- W2890678642 hasPublicationYear "2017" @default.
- W2890678642 type Work @default.
- W2890678642 sameAs 2890678642 @default.
- W2890678642 citedByCount "4" @default.
- W2890678642 countsByYear W28906786422018 @default.
- W2890678642 countsByYear W28906786422019 @default.
- W2890678642 countsByYear W28906786422022 @default.
- W2890678642 countsByYear W28906786422023 @default.
- W2890678642 crossrefType "proceedings-article" @default.
- W2890678642 hasAuthorship W2890678642A5006115428 @default.
- W2890678642 hasAuthorship W2890678642A5023906269 @default.
- W2890678642 hasAuthorship W2890678642A5027593265 @default.
- W2890678642 hasAuthorship W2890678642A5033152251 @default.
- W2890678642 hasAuthorship W2890678642A5035100758 @default.
- W2890678642 hasAuthorship W2890678642A5058484144 @default.
- W2890678642 hasAuthorship W2890678642A5062163327 @default.
- W2890678642 hasAuthorship W2890678642A5066244246 @default.
- W2890678642 hasAuthorship W2890678642A5073995883 @default.
- W2890678642 hasAuthorship W2890678642A5074891005 @default.
- W2890678642 hasConcept C115961682 @default.
- W2890678642 hasConcept C124504099 @default.
- W2890678642 hasConcept C142724271 @default.
- W2890678642 hasConcept C153180895 @default.
- W2890678642 hasConcept C154945302 @default.
- W2890678642 hasConcept C203014093 @default.
- W2890678642 hasConcept C2776557347 @default.
- W2890678642 hasConcept C2778048844 @default.
- W2890678642 hasConcept C2778488018 @default.
- W2890678642 hasConcept C2779979121 @default.
- W2890678642 hasConcept C3017819844 @default.
- W2890678642 hasConcept C31972630 @default.
- W2890678642 hasConcept C34736171 @default.
- W2890678642 hasConcept C41008148 @default.
- W2890678642 hasConcept C71924100 @default.
- W2890678642 hasConcept C89600930 @default.
- W2890678642 hasConcept C9417928 @default.
- W2890678642 hasConceptScore W2890678642C115961682 @default.
- W2890678642 hasConceptScore W2890678642C124504099 @default.
- W2890678642 hasConceptScore W2890678642C142724271 @default.
- W2890678642 hasConceptScore W2890678642C153180895 @default.
- W2890678642 hasConceptScore W2890678642C154945302 @default.
- W2890678642 hasConceptScore W2890678642C203014093 @default.
- W2890678642 hasConceptScore W2890678642C2776557347 @default.
- W2890678642 hasConceptScore W2890678642C2778048844 @default.
- W2890678642 hasConceptScore W2890678642C2778488018 @default.
- W2890678642 hasConceptScore W2890678642C2779979121 @default.
- W2890678642 hasConceptScore W2890678642C3017819844 @default.
- W2890678642 hasConceptScore W2890678642C31972630 @default.
- W2890678642 hasConceptScore W2890678642C34736171 @default.
- W2890678642 hasConceptScore W2890678642C41008148 @default.
- W2890678642 hasConceptScore W2890678642C71924100 @default.
- W2890678642 hasConceptScore W2890678642C89600930 @default.
- W2890678642 hasConceptScore W2890678642C9417928 @default.
- W2890678642 hasLocation W28906786421 @default.
- W2890678642 hasOpenAccess W2890678642 @default.
- W2890678642 hasPrimaryLocation W28906786421 @default.
- W2890678642 hasRelatedWork W1669643531 @default.
- W2890678642 hasRelatedWork W2036075313 @default.
- W2890678642 hasRelatedWork W2046184216 @default.
- W2890678642 hasRelatedWork W2103489705 @default.
- W2890678642 hasRelatedWork W2110230079 @default.
- W2890678642 hasRelatedWork W2117933325 @default.
- W2890678642 hasRelatedWork W2122581818 @default.
- W2890678642 hasRelatedWork W2159066190 @default.
- W2890678642 hasRelatedWork W2739874619 @default.
- W2890678642 hasRelatedWork W2890678642 @default.
- W2890678642 isParatext "false" @default.
- W2890678642 isRetracted "false" @default.
- W2890678642 magId "2890678642" @default.
- W2890678642 workType "article" @default.