Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890683580> ?p ?o ?g. }
- W2890683580 endingPage "280" @default.
- W2890683580 startingPage "264" @default.
- W2890683580 abstract "The Distributed Point Source Method (DPSM) is a modeling technique based on superposition of fundamental solutions corresponding to individual pair of source and target points. A collection of source points distributed over the boundaries and interfaces are responsible for transmission, reflection, and refraction of acoustic waves in the solution domain. The strength of the source points may not be known a priory. By imposing the prescribed conditions on the boundaries and interfaces, a system of equations with the source strengths as the unknowns is obtained. After finding the source strengths as the solution to this system of equation, the amount of the solution at any target point in the domain is obtained by superimposing the effect of all source points on that target point. DPSM is an efficient modeling technique for ultrasonic problems since it does not require discretization of the whole solution domain but only the boundaries and interfaces. The fundamental solution, or the Green’s function, between a pair of source and target points serves as the building block for DPSM. For an ideal fluid or a homogeneous isotropic solid the elastodynamic Green’s function is available as closed form algebraic expressions. But for an anisotropic solids, the set of governing equations are considerably more complex and the elastodynamic Green’s function needs to be evaluated numerically. In this study, an anisotropic half-space containing a flaw in the form of a circular hole is considered. The solid half-space is in contact with fluid and a transducer is located in fluid facing the solid half-space. Some efforts have been made to alleviate the computational intensity of the numerical evaluation of anisotropic Green’s function for this problem. Firstly, a technique called “windowing” is used to exploit the repetitive pattern of relative positions of the source and target points in order to considerably reduce the number of Green’s function evaluations. Secondly, the resolution of the integration for evaluation of the anisotropic Green’s function is changed based on the distance between the source and target points, and a calibration technique based on an equivalent isotropic stiffness tensor is suggested. This calibrated multi-resolution integration technique is combined with the windowing technique, and the developed DPSM model is applied to a numerical example containing a transversely isotropic half-space, to show the applicability and effectiveness of DPSM modeling for this class of problems. Important applications like non-destructive evaluation of composite materials may benefit from such modeling capability." @default.
- W2890683580 created "2018-09-27" @default.
- W2890683580 creator A5001299355 @default.
- W2890683580 creator A5035546841 @default.
- W2890683580 date "2019-04-01" @default.
- W2890683580 modified "2023-10-16" @default.
- W2890683580 title "Distributed point source modeling of the scattering of elastic waves by a circular cavity in an anisotropic half-space" @default.
- W2890683580 cites W1496781643 @default.
- W2890683580 cites W1560696979 @default.
- W2890683580 cites W1968079583 @default.
- W2890683580 cites W1969312973 @default.
- W2890683580 cites W1981040101 @default.
- W2890683580 cites W1981051308 @default.
- W2890683580 cites W1990528066 @default.
- W2890683580 cites W1998097290 @default.
- W2890683580 cites W2016016098 @default.
- W2890683580 cites W2024791867 @default.
- W2890683580 cites W2028193530 @default.
- W2890683580 cites W2032239082 @default.
- W2890683580 cites W2034842912 @default.
- W2890683580 cites W2049817248 @default.
- W2890683580 cites W2052470090 @default.
- W2890683580 cites W2060251711 @default.
- W2890683580 cites W2063586630 @default.
- W2890683580 cites W2067138407 @default.
- W2890683580 cites W2078819065 @default.
- W2890683580 cites W2079462537 @default.
- W2890683580 cites W2082185481 @default.
- W2890683580 cites W2084210377 @default.
- W2890683580 cites W2087821544 @default.
- W2890683580 cites W2089295454 @default.
- W2890683580 cites W2094873594 @default.
- W2890683580 cites W2096043720 @default.
- W2890683580 cites W2100098334 @default.
- W2890683580 cites W2123996406 @default.
- W2890683580 cites W2128548139 @default.
- W2890683580 cites W2142008225 @default.
- W2890683580 cites W2142880778 @default.
- W2890683580 cites W2163988324 @default.
- W2890683580 cites W2328414544 @default.
- W2890683580 cites W2568885470 @default.
- W2890683580 cites W2594975498 @default.
- W2890683580 cites W4236568146 @default.
- W2890683580 doi "https://doi.org/10.1016/j.ultras.2018.09.002" @default.
- W2890683580 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30274854" @default.
- W2890683580 hasPublicationYear "2019" @default.
- W2890683580 type Work @default.
- W2890683580 sameAs 2890683580 @default.
- W2890683580 citedByCount "4" @default.
- W2890683580 countsByYear W28906835802019 @default.
- W2890683580 countsByYear W28906835802020 @default.
- W2890683580 countsByYear W28906835802022 @default.
- W2890683580 countsByYear W28906835802023 @default.
- W2890683580 crossrefType "journal-article" @default.
- W2890683580 hasAuthorship W2890683580A5001299355 @default.
- W2890683580 hasAuthorship W2890683580A5035546841 @default.
- W2890683580 hasConcept C103783831 @default.
- W2890683580 hasConcept C120665830 @default.
- W2890683580 hasConcept C121332964 @default.
- W2890683580 hasConcept C132312353 @default.
- W2890683580 hasConcept C134306372 @default.
- W2890683580 hasConcept C14036430 @default.
- W2890683580 hasConcept C184050105 @default.
- W2890683580 hasConcept C199360897 @default.
- W2890683580 hasConcept C24890656 @default.
- W2890683580 hasConcept C2524010 @default.
- W2890683580 hasConcept C27753989 @default.
- W2890683580 hasConcept C2780187573 @default.
- W2890683580 hasConcept C28719098 @default.
- W2890683580 hasConcept C33923547 @default.
- W2890683580 hasConcept C41008148 @default.
- W2890683580 hasConcept C44870925 @default.
- W2890683580 hasConcept C65682993 @default.
- W2890683580 hasConcept C73000952 @default.
- W2890683580 hasConcept C78458016 @default.
- W2890683580 hasConcept C86803240 @default.
- W2890683580 hasConcept C95340234 @default.
- W2890683580 hasConceptScore W2890683580C103783831 @default.
- W2890683580 hasConceptScore W2890683580C120665830 @default.
- W2890683580 hasConceptScore W2890683580C121332964 @default.
- W2890683580 hasConceptScore W2890683580C132312353 @default.
- W2890683580 hasConceptScore W2890683580C134306372 @default.
- W2890683580 hasConceptScore W2890683580C14036430 @default.
- W2890683580 hasConceptScore W2890683580C184050105 @default.
- W2890683580 hasConceptScore W2890683580C199360897 @default.
- W2890683580 hasConceptScore W2890683580C24890656 @default.
- W2890683580 hasConceptScore W2890683580C2524010 @default.
- W2890683580 hasConceptScore W2890683580C27753989 @default.
- W2890683580 hasConceptScore W2890683580C2780187573 @default.
- W2890683580 hasConceptScore W2890683580C28719098 @default.
- W2890683580 hasConceptScore W2890683580C33923547 @default.
- W2890683580 hasConceptScore W2890683580C41008148 @default.
- W2890683580 hasConceptScore W2890683580C44870925 @default.
- W2890683580 hasConceptScore W2890683580C65682993 @default.
- W2890683580 hasConceptScore W2890683580C73000952 @default.
- W2890683580 hasConceptScore W2890683580C78458016 @default.
- W2890683580 hasConceptScore W2890683580C86803240 @default.
- W2890683580 hasConceptScore W2890683580C95340234 @default.