Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890691512> ?p ?o ?g. }
- W2890691512 endingPage "176" @default.
- W2890691512 startingPage "166" @default.
- W2890691512 abstract "In the present study, the preparation of pharmaceutical mini-tablets was attempted in the framework of Quality by Design (QbD) context, by comparing traditionally used multi-linear regression (MLR), with artificially-intelligence based regression techniques (such as standard artificial neural networks (ANNs), particle swarm optimization (PSO) ANNs and genetic programming (GP)) during Design of Experiment (DoE) implementation. Specifically, the effect of diluent type and particle size fraction for three commonly used direct compression diluents (lactose, pregelatinized starch and dibasic calcium phosphate dihydrate, DCPD) blended with either hydrophilic or hydrophobic flowing aids was evaluated in terms of: a) powder blend properties (such as bulk (Y1) and tapped (Y2) density, Carr’s compressibility index (Y3, CCI), Kawakita’s compaction fitting parameters a (Y4) and 1/b (Y5)), and b) mini-tablet’s properties (such as relative density (Y6), average weight (Y7) and weight variation (Y8)). Results showed better flowing properties for pregelatinized starch and improved packing properties for lactose and DPCD. MLR analysis showed high goodness of fit for the Y1, Y2, Y4, Y6 and Y8 with RMSE values of Y1 = 0.028, Y2 = 0.032, Y4 = 0.019, Y6 = 0.015 and Y8 = 0.130; while for rest responses, high correlation was observed from both standard ANNs and GP. PSO-ANNs fitting was the only regression technique that was able to adequately fit all responses simultaneously (RMSE values of Y1 = 0.026, Y2 = 0.022, Y3 = 0.025, Y4 = 0.010, Y5 = 0.063, Y6 = 0.013, Y7 = 0.064 and Y8 = 0.104)." @default.
- W2890691512 created "2018-09-27" @default.
- W2890691512 creator A5016209505 @default.
- W2890691512 creator A5056170905 @default.
- W2890691512 creator A5066787200 @default.
- W2890691512 creator A5071584536 @default.
- W2890691512 date "2018-11-01" @default.
- W2890691512 modified "2023-09-25" @default.
- W2890691512 title "Comparison of multi-linear regression, particle swarm optimization artificial neural networks and genetic programming in the development of mini-tablets" @default.
- W2890691512 cites W1524673385 @default.
- W2890691512 cites W1888884532 @default.
- W2890691512 cites W1895961394 @default.
- W2890691512 cites W1966496350 @default.
- W2890691512 cites W1973375288 @default.
- W2890691512 cites W1973837203 @default.
- W2890691512 cites W1980615171 @default.
- W2890691512 cites W1983669978 @default.
- W2890691512 cites W1991038322 @default.
- W2890691512 cites W1992059532 @default.
- W2890691512 cites W2000918679 @default.
- W2890691512 cites W2002631812 @default.
- W2890691512 cites W2015228653 @default.
- W2890691512 cites W2017422910 @default.
- W2890691512 cites W2018768974 @default.
- W2890691512 cites W2040492000 @default.
- W2890691512 cites W2055423026 @default.
- W2890691512 cites W2060346113 @default.
- W2890691512 cites W2062445636 @default.
- W2890691512 cites W2074669169 @default.
- W2890691512 cites W2087178073 @default.
- W2890691512 cites W2090771033 @default.
- W2890691512 cites W2121394390 @default.
- W2890691512 cites W2132011749 @default.
- W2890691512 cites W2143908786 @default.
- W2890691512 cites W2153475291 @default.
- W2890691512 cites W2314571008 @default.
- W2890691512 cites W2320300558 @default.
- W2890691512 cites W2528794995 @default.
- W2890691512 cites W2578654374 @default.
- W2890691512 cites W2584226333 @default.
- W2890691512 cites W2588399783 @default.
- W2890691512 cites W2607137320 @default.
- W2890691512 cites W2762780156 @default.
- W2890691512 cites W2791530532 @default.
- W2890691512 doi "https://doi.org/10.1016/j.ijpharm.2018.09.026" @default.
- W2890691512 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30227239" @default.
- W2890691512 hasPublicationYear "2018" @default.
- W2890691512 type Work @default.
- W2890691512 sameAs 2890691512 @default.
- W2890691512 citedByCount "21" @default.
- W2890691512 countsByYear W28906915122020 @default.
- W2890691512 countsByYear W28906915122021 @default.
- W2890691512 countsByYear W28906915122022 @default.
- W2890691512 countsByYear W28906915122023 @default.
- W2890691512 crossrefType "journal-article" @default.
- W2890691512 hasAuthorship W2890691512A5016209505 @default.
- W2890691512 hasAuthorship W2890691512A5056170905 @default.
- W2890691512 hasAuthorship W2890691512A5066787200 @default.
- W2890691512 hasAuthorship W2890691512A5071584536 @default.
- W2890691512 hasConcept C105795698 @default.
- W2890691512 hasConcept C11413529 @default.
- W2890691512 hasConcept C119857082 @default.
- W2890691512 hasConcept C128990827 @default.
- W2890691512 hasConcept C13965031 @default.
- W2890691512 hasConcept C147789679 @default.
- W2890691512 hasConcept C151730666 @default.
- W2890691512 hasConcept C159985019 @default.
- W2890691512 hasConcept C175804951 @default.
- W2890691512 hasConcept C185592680 @default.
- W2890691512 hasConcept C186060115 @default.
- W2890691512 hasConcept C187530423 @default.
- W2890691512 hasConcept C192562407 @default.
- W2890691512 hasConcept C196715460 @default.
- W2890691512 hasConcept C2779343474 @default.
- W2890691512 hasConcept C33923547 @default.
- W2890691512 hasConcept C41008148 @default.
- W2890691512 hasConcept C48921125 @default.
- W2890691512 hasConcept C50644808 @default.
- W2890691512 hasConcept C85617194 @default.
- W2890691512 hasConcept C86803240 @default.
- W2890691512 hasConceptScore W2890691512C105795698 @default.
- W2890691512 hasConceptScore W2890691512C11413529 @default.
- W2890691512 hasConceptScore W2890691512C119857082 @default.
- W2890691512 hasConceptScore W2890691512C128990827 @default.
- W2890691512 hasConceptScore W2890691512C13965031 @default.
- W2890691512 hasConceptScore W2890691512C147789679 @default.
- W2890691512 hasConceptScore W2890691512C151730666 @default.
- W2890691512 hasConceptScore W2890691512C159985019 @default.
- W2890691512 hasConceptScore W2890691512C175804951 @default.
- W2890691512 hasConceptScore W2890691512C185592680 @default.
- W2890691512 hasConceptScore W2890691512C186060115 @default.
- W2890691512 hasConceptScore W2890691512C187530423 @default.
- W2890691512 hasConceptScore W2890691512C192562407 @default.
- W2890691512 hasConceptScore W2890691512C196715460 @default.
- W2890691512 hasConceptScore W2890691512C2779343474 @default.
- W2890691512 hasConceptScore W2890691512C33923547 @default.
- W2890691512 hasConceptScore W2890691512C41008148 @default.
- W2890691512 hasConceptScore W2890691512C48921125 @default.