Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890693568> ?p ?o ?g. }
- W2890693568 endingPage "197" @default.
- W2890693568 startingPage "187" @default.
- W2890693568 abstract "Energy consumption is an important economical index of a fuel cell hybrid vehicle (FCHV). To analyse the energy consumption of a range extender FCHV and reduce the cost of experiments, this study developed a nonlinear regression model of the powertrain of the vehicle to predict the current and voltage on the DC bus, which were used in the investigation of energy consumption, by using the intelligent algorithms including Back Propagation neural network (BP), Genetic Algorithm-Back Propagation neural network (GABP) and least square support vector machine (LSSVM). The model based on the LSSVM achieves the best predicted performance and can consider the nonlinear characteristics of the powertrain quite well. A case study was discussed by applying the obtained model and integrated with a hierarchical energy management strategy (HEMS). The specific results of energy consumption showed that it is feasible to use the predicted data of the obtained model in the analysis of the energy consumption of the FCHV." @default.
- W2890693568 created "2018-09-27" @default.
- W2890693568 creator A5013685768 @default.
- W2890693568 creator A5017749211 @default.
- W2890693568 creator A5030774281 @default.
- W2890693568 creator A5032933854 @default.
- W2890693568 creator A5037458498 @default.
- W2890693568 creator A5045249334 @default.
- W2890693568 creator A5085028560 @default.
- W2890693568 date "2018-12-01" @default.
- W2890693568 modified "2023-10-09" @default.
- W2890693568 title "Modelling and predicting energy consumption of a range extender fuel cell hybrid vehicle" @default.
- W2890693568 cites W1596717185 @default.
- W2890693568 cites W1609200543 @default.
- W2890693568 cites W1695262371 @default.
- W2890693568 cites W1974632557 @default.
- W2890693568 cites W1979406625 @default.
- W2890693568 cites W1984051156 @default.
- W2890693568 cites W1988003858 @default.
- W2890693568 cites W1990625378 @default.
- W2890693568 cites W2012272848 @default.
- W2890693568 cites W2015009093 @default.
- W2890693568 cites W2016950446 @default.
- W2890693568 cites W2035476196 @default.
- W2890693568 cites W2035834480 @default.
- W2890693568 cites W2043532699 @default.
- W2890693568 cites W2062135293 @default.
- W2890693568 cites W2079295993 @default.
- W2890693568 cites W2079762419 @default.
- W2890693568 cites W2085688718 @default.
- W2890693568 cites W2091178218 @default.
- W2890693568 cites W2130372754 @default.
- W2890693568 cites W2161057207 @default.
- W2890693568 cites W2183715205 @default.
- W2890693568 cites W2199762924 @default.
- W2890693568 cites W2256220630 @default.
- W2890693568 cites W2260322208 @default.
- W2890693568 cites W2467814465 @default.
- W2890693568 cites W2559106300 @default.
- W2890693568 cites W2583089664 @default.
- W2890693568 cites W2593802306 @default.
- W2890693568 cites W2599399722 @default.
- W2890693568 cites W2605416858 @default.
- W2890693568 cites W2605595645 @default.
- W2890693568 cites W2606517894 @default.
- W2890693568 cites W2627057877 @default.
- W2890693568 cites W2735145085 @default.
- W2890693568 cites W2750501475 @default.
- W2890693568 cites W2754060618 @default.
- W2890693568 cites W2765583927 @default.
- W2890693568 cites W2767020122 @default.
- W2890693568 cites W2793089584 @default.
- W2890693568 cites W648223566 @default.
- W2890693568 doi "https://doi.org/10.1016/j.energy.2018.09.086" @default.
- W2890693568 hasPublicationYear "2018" @default.
- W2890693568 type Work @default.
- W2890693568 sameAs 2890693568 @default.
- W2890693568 citedByCount "53" @default.
- W2890693568 countsByYear W28906935682019 @default.
- W2890693568 countsByYear W28906935682020 @default.
- W2890693568 countsByYear W28906935682021 @default.
- W2890693568 countsByYear W28906935682022 @default.
- W2890693568 countsByYear W28906935682023 @default.
- W2890693568 crossrefType "journal-article" @default.
- W2890693568 hasAuthorship W2890693568A5013685768 @default.
- W2890693568 hasAuthorship W2890693568A5017749211 @default.
- W2890693568 hasAuthorship W2890693568A5030774281 @default.
- W2890693568 hasAuthorship W2890693568A5032933854 @default.
- W2890693568 hasAuthorship W2890693568A5037458498 @default.
- W2890693568 hasAuthorship W2890693568A5045249334 @default.
- W2890693568 hasAuthorship W2890693568A5085028560 @default.
- W2890693568 hasConcept C105795698 @default.
- W2890693568 hasConcept C119599485 @default.
- W2890693568 hasConcept C119857082 @default.
- W2890693568 hasConcept C121332964 @default.
- W2890693568 hasConcept C127413603 @default.
- W2890693568 hasConcept C144171764 @default.
- W2890693568 hasConcept C146978453 @default.
- W2890693568 hasConcept C154945302 @default.
- W2890693568 hasConcept C155032097 @default.
- W2890693568 hasConcept C158622935 @default.
- W2890693568 hasConcept C163258240 @default.
- W2890693568 hasConcept C171146098 @default.
- W2890693568 hasConcept C186370098 @default.
- W2890693568 hasConcept C204323151 @default.
- W2890693568 hasConcept C2780165032 @default.
- W2890693568 hasConcept C33923547 @default.
- W2890693568 hasConcept C41008148 @default.
- W2890693568 hasConcept C44154836 @default.
- W2890693568 hasConcept C45882903 @default.
- W2890693568 hasConcept C50644808 @default.
- W2890693568 hasConcept C516807790 @default.
- W2890693568 hasConcept C62520636 @default.
- W2890693568 hasConcept C76047896 @default.
- W2890693568 hasConcept C7817414 @default.
- W2890693568 hasConcept C8880873 @default.
- W2890693568 hasConcept C97355855 @default.
- W2890693568 hasConceptScore W2890693568C105795698 @default.