Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890694976> ?p ?o ?g. }
- W2890694976 endingPage "2263" @default.
- W2890694976 startingPage "2255" @default.
- W2890694976 abstract "ConspectusThe objective of this Account is to summarize the first five years of anion−π catalysis. The general idea of anion−π catalysis is to stabilize anionic transition states on aromatic surfaces. This is complementary to the stabilization of cationic transition states on aromatic surfaces, a mode of action that occurs in nature and is increasingly used in chemistry. Anion−π catalysis, however, rarely occurs in nature and has been unexplored in chemistry. Probably because the attraction of anions to π surfaces as such is counterintuitive, anion−π interactions in general are much younger than cation−π interactions and remain under-recognized until today. Anion−π catalysis has emerged from early findings that anion−π interactions can mediate the transport of anions across lipid bilayer membranes. With this evidence for stabilization in the ground state secured, there was no reason to believe that anion−π interactions could not also stabilize anionic transition states.As an attractive reaction to develop anion−π catalysis, the addition of malonic acid half thioesters to enolate acceptors was selected. This choice was also made because without enzymes decarboxylation is preferred and anion−π interactions promised to catalyze selectively the disfavored but relevant enolate addition. Concerning anion−π catalysts, we started with naphthalene diimides (NDIs) because their intrinsic quadrupole moment is highly positive. The NDI scaffold was used to address questions such as the positioning of substrates on the catalytic π surface or the dependence of activity on the π acidity of this π surface.With the basics in place, the next milestone was the creation of anion−π enzymes, that is, enzymes that operate with an interaction rarely used in biology, at least on intrinsically π-acidic or highly polarizable aromatic amino-acid side chains. Electric-field-assisted anion−π catalysis addresses topics such as heterogeneous catalysis on electrodes and remote control of activity by voltage. On π-stacked foldamers, anion–(π)n–π catalysis was discovered. Fullerenes emerged as the scaffold of choice to explore contributions from polarizability. On fullerenes, anionic transition states are stabilized by large macrodipoles that appear only in response to their presence.With this growing collection of anion−π catalysts, several reactions beyond enolate addition have been explored so far. Initial efforts focused on asymmetric anion−π catalysis. Increasing enantioselectivity with increasing π acidity of the active π surface has been exemplified for enamine and iminium chemistry and for anion−π transaminase mimics. However, the delocalized nature of anion−π interactions calls for the stabilization of charge displacements over longer distances. The first step in this direction was the formation of cyclohexane rings with five stereogenic centers from achiral acyclic substrates on π-acidic surfaces. Moreover, the intrinsically disfavored exo transition state of anionic Diels–Alder reactions is stabilized selectively on π-acidic surfaces; endo products and otherwise preferred Michael addition products are completely suppressed. Taken together, we hope that these results on catalyst design and reaction scope will establish anion−π catalysis as a general principle in catalysis in the broadest sense." @default.
- W2890694976 created "2018-09-27" @default.
- W2890694976 creator A5001067374 @default.
- W2890694976 creator A5010518360 @default.
- W2890694976 creator A5030366022 @default.
- W2890694976 creator A5037906302 @default.
- W2890694976 creator A5065831776 @default.
- W2890694976 creator A5066285072 @default.
- W2890694976 creator A5072263594 @default.
- W2890694976 creator A5081942045 @default.
- W2890694976 date "2018-09-06" @default.
- W2890694976 modified "2023-10-17" @default.
- W2890694976 title "The Emergence of Anion−π Catalysis" @default.
- W2890694976 cites W1658834041 @default.
- W2890694976 cites W1787278343 @default.
- W2890694976 cites W1955090788 @default.
- W2890694976 cites W1968629160 @default.
- W2890694976 cites W1998740595 @default.
- W2890694976 cites W2016494886 @default.
- W2890694976 cites W2021285307 @default.
- W2890694976 cites W2022407184 @default.
- W2890694976 cites W2024314990 @default.
- W2890694976 cites W2031868598 @default.
- W2890694976 cites W2044473641 @default.
- W2890694976 cites W2046820018 @default.
- W2890694976 cites W2058731512 @default.
- W2890694976 cites W2058837873 @default.
- W2890694976 cites W2065928336 @default.
- W2890694976 cites W2087553196 @default.
- W2890694976 cites W2101076261 @default.
- W2890694976 cites W2103463892 @default.
- W2890694976 cites W2103465987 @default.
- W2890694976 cites W2122206109 @default.
- W2890694976 cites W2129185952 @default.
- W2890694976 cites W2142791660 @default.
- W2890694976 cites W2146298489 @default.
- W2890694976 cites W2170545269 @default.
- W2890694976 cites W2188461828 @default.
- W2890694976 cites W2201305088 @default.
- W2890694976 cites W2279789322 @default.
- W2890694976 cites W2282176717 @default.
- W2890694976 cites W2336922573 @default.
- W2890694976 cites W2401032469 @default.
- W2890694976 cites W2460132271 @default.
- W2890694976 cites W2474139868 @default.
- W2890694976 cites W2512702739 @default.
- W2890694976 cites W2550407604 @default.
- W2890694976 cites W2596451072 @default.
- W2890694976 cites W2612631205 @default.
- W2890694976 cites W2743148632 @default.
- W2890694976 cites W2751345243 @default.
- W2890694976 cites W2755111532 @default.
- W2890694976 cites W2789755580 @default.
- W2890694976 cites W2795896759 @default.
- W2890694976 cites W2813373686 @default.
- W2890694976 cites W3005441625 @default.
- W2890694976 cites W4252620697 @default.
- W2890694976 doi "https://doi.org/10.1021/acs.accounts.8b00223" @default.
- W2890694976 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30188692" @default.
- W2890694976 hasPublicationYear "2018" @default.
- W2890694976 type Work @default.
- W2890694976 sameAs 2890694976 @default.
- W2890694976 citedByCount "157" @default.
- W2890694976 countsByYear W28906949762019 @default.
- W2890694976 countsByYear W28906949762020 @default.
- W2890694976 countsByYear W28906949762021 @default.
- W2890694976 countsByYear W28906949762022 @default.
- W2890694976 countsByYear W28906949762023 @default.
- W2890694976 crossrefType "journal-article" @default.
- W2890694976 hasAuthorship W2890694976A5001067374 @default.
- W2890694976 hasAuthorship W2890694976A5010518360 @default.
- W2890694976 hasAuthorship W2890694976A5030366022 @default.
- W2890694976 hasAuthorship W2890694976A5037906302 @default.
- W2890694976 hasAuthorship W2890694976A5065831776 @default.
- W2890694976 hasAuthorship W2890694976A5066285072 @default.
- W2890694976 hasAuthorship W2890694976A5072263594 @default.
- W2890694976 hasAuthorship W2890694976A5081942045 @default.
- W2890694976 hasBestOaLocation W28906949761 @default.
- W2890694976 hasConcept C145148216 @default.
- W2890694976 hasConcept C147597530 @default.
- W2890694976 hasConcept C161790260 @default.
- W2890694976 hasConcept C178790620 @default.
- W2890694976 hasConcept C183882617 @default.
- W2890694976 hasConcept C185592680 @default.
- W2890694976 hasConcept C21951064 @default.
- W2890694976 hasConcept C89031862 @default.
- W2890694976 hasConceptScore W2890694976C145148216 @default.
- W2890694976 hasConceptScore W2890694976C147597530 @default.
- W2890694976 hasConceptScore W2890694976C161790260 @default.
- W2890694976 hasConceptScore W2890694976C178790620 @default.
- W2890694976 hasConceptScore W2890694976C183882617 @default.
- W2890694976 hasConceptScore W2890694976C185592680 @default.
- W2890694976 hasConceptScore W2890694976C21951064 @default.
- W2890694976 hasConceptScore W2890694976C89031862 @default.
- W2890694976 hasFunder F4320320924 @default.
- W2890694976 hasFunder F4320323830 @default.
- W2890694976 hasFunder F4320338337 @default.
- W2890694976 hasIssue "9" @default.