Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890695258> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2890695258 abstract "With an ever increasing demand on large scale data, difficulties exist in terms of processing and utilising the information available. In particular, making decisions based upon sequentially acquired data where only limited information is initially known, is an important problem. Often the input data in such problems have a complex combinatorial structure, for example consider an internet advertising system that manages advertisement placement over a network of websites. The ways of placing m different advertisements on n websites with replacement, is an exponential number of mn possible combinations that scales badly with large n. As a combinatorial problem, the data can be manipulated within a frequently occurring computational object called graph, allowing the structure to be exploited for intelligent automatic processing. Traditionally, machine learning techniques require a separate initial training phase before predictions can occur on unseen data. However, the sequential nature of some problems necessitate real-time prediction, thereby making many existing techniques unsuitable. Online learning is a field of machine learning that has an ensemble of algorithms that learn from sequential streaming data, where the learner cannot control or in influence the data collection procedure. Although these existing online methods have theoretical guarantees on performance, in the context of combinatorial complexity of graphical structures they are not yet fully matured. In this thesis, a series of algorithms that attempt to overcome the shortcomings of existing online algorithms are presented. The discrete graphical model, called the Ising model, is explored to develop online approximation algorithms for label prediction. A deterministic approximation algorithm with sequential guarantee is developed, by capturing the persistent structures of maximum flows and minimum cuts in the network and an efficient enumeration of all label consistent minimum cuts. Novel mistake bounds are provided that improve and match previous performance bounds in the literature. Additionally, a variational approximation technique using mean field approximation is built for online prediction of multi-class labelling on the Ising model. An online sequential action selection algorithm for the limited feedback setting (bandit feedback) and side information is developed with a linear programming relaxation of the classic maximal flow problem. Finally, the multiple objective optimization problem with conflicting objectives and full feedback is studied and an online algorithm is built that outperforms the traditional approaches under similar assumptions." @default.
- W2890695258 created "2018-09-27" @default.
- W2890695258 creator A5027156022 @default.
- W2890695258 date "2016-03-01" @default.
- W2890695258 modified "2023-09-23" @default.
- W2890695258 title "Online machine learning for combinatorial data" @default.
- W2890695258 hasPublicationYear "2016" @default.
- W2890695258 type Work @default.
- W2890695258 sameAs 2890695258 @default.
- W2890695258 citedByCount "0" @default.
- W2890695258 crossrefType "dissertation" @default.
- W2890695258 hasAuthorship W2890695258A5027156022 @default.
- W2890695258 hasConcept C11413529 @default.
- W2890695258 hasConcept C119857082 @default.
- W2890695258 hasConcept C124101348 @default.
- W2890695258 hasConcept C132525143 @default.
- W2890695258 hasConcept C151730666 @default.
- W2890695258 hasConcept C154945302 @default.
- W2890695258 hasConcept C196921405 @default.
- W2890695258 hasConcept C2779343474 @default.
- W2890695258 hasConcept C41008148 @default.
- W2890695258 hasConcept C75684735 @default.
- W2890695258 hasConcept C80444323 @default.
- W2890695258 hasConcept C86803240 @default.
- W2890695258 hasConceptScore W2890695258C11413529 @default.
- W2890695258 hasConceptScore W2890695258C119857082 @default.
- W2890695258 hasConceptScore W2890695258C124101348 @default.
- W2890695258 hasConceptScore W2890695258C132525143 @default.
- W2890695258 hasConceptScore W2890695258C151730666 @default.
- W2890695258 hasConceptScore W2890695258C154945302 @default.
- W2890695258 hasConceptScore W2890695258C196921405 @default.
- W2890695258 hasConceptScore W2890695258C2779343474 @default.
- W2890695258 hasConceptScore W2890695258C41008148 @default.
- W2890695258 hasConceptScore W2890695258C75684735 @default.
- W2890695258 hasConceptScore W2890695258C80444323 @default.
- W2890695258 hasConceptScore W2890695258C86803240 @default.
- W2890695258 hasLocation W28906952581 @default.
- W2890695258 hasOpenAccess W2890695258 @default.
- W2890695258 hasPrimaryLocation W28906952581 @default.
- W2890695258 hasRelatedWork W1652467813 @default.
- W2890695258 hasRelatedWork W2150647453 @default.
- W2890695258 hasRelatedWork W2187054543 @default.
- W2890695258 hasRelatedWork W2273048275 @default.
- W2890695258 hasRelatedWork W2413613665 @default.
- W2890695258 hasRelatedWork W2528894172 @default.
- W2890695258 hasRelatedWork W268427563 @default.
- W2890695258 hasRelatedWork W2766307072 @default.
- W2890695258 hasRelatedWork W2899173741 @default.
- W2890695258 hasRelatedWork W2922429874 @default.
- W2890695258 hasRelatedWork W2924453410 @default.
- W2890695258 hasRelatedWork W2963264468 @default.
- W2890695258 hasRelatedWork W2982154564 @default.
- W2890695258 hasRelatedWork W3092879920 @default.
- W2890695258 hasRelatedWork W3126262302 @default.
- W2890695258 hasRelatedWork W3127445883 @default.
- W2890695258 hasRelatedWork W3171756615 @default.
- W2890695258 hasRelatedWork W3181588811 @default.
- W2890695258 hasRelatedWork W46711333 @default.
- W2890695258 hasRelatedWork W2302853122 @default.
- W2890695258 isParatext "false" @default.
- W2890695258 isRetracted "false" @default.
- W2890695258 magId "2890695258" @default.
- W2890695258 workType "dissertation" @default.