Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890698739> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2890698739 abstract "US Department of Defense (DoD) big data is extensively multimodal and multiple intelligence (multi-INT), where structured sensor and unstructured audio, video and textual ISR (Intelligence, Surveillance, and Reconnaissance) data are generated by numerous air, ground, and space borne sensors along with human intelligence. Data fusion at all levels “remains a challenging task.” While there are algorithmic stove-piped systems that work well on individual modalities, there is no system to date that is mission and source agnostics and can seamlessly integrate and correlate multi-INT data that includes textual, hyperspectral, and video content. The considerable volume and velocity aspects of big data only compound the aforementioned encountered in fusion. We have developed the concept of “deep fusion” <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sup> based on deep learning models adapted to process multiple modalities of big data. Rather than reducing each modality independently and fusing at a higher-level model (feature-level fusion), the deep fusion approach generates a set of multimodal features, thereby maintaining the core properties of the dissimilar signals and resulting in fused models of higher accuracy. We have initiated two deep fusion experiments - one is to automatically generate the caption of an image to help analysts tagging and captioning large volumes of images gathered from collection platforms, and the other is an audio-visual speech classification with potential applications to lip-reading and enhanced object tracking. This paper presents the proof-of-concept demonstration for caption generation. The generative model is based on a deep recurrent architecture combined with the pre-trained image-to-vector model Inception V3 via a Convolutional Neural Network (CNN) and the word-to-vectors model word2vec via a skip-gram model. We make use of the Flickr8K dataset extended with some military specific images to make the demonstration more relevant to the DoD domain. The detailed results from the image captioning experiment is presented here. The captions are generated from test image are subjectively evaluated and the BLEU (bilingual evaluation understudy) scores are compared and found substantial improvements." @default.
- W2890698739 created "2018-09-27" @default.
- W2890698739 creator A5012031382 @default.
- W2890698739 creator A5025082018 @default.
- W2890698739 creator A5083730924 @default.
- W2890698739 date "2018-07-01" @default.
- W2890698739 modified "2023-10-11" @default.
- W2890698739 title "Deep Learning for Military Image Captioning" @default.
- W2890698739 cites W1966532833 @default.
- W2890698739 cites W2008008156 @default.
- W2890698739 cites W2025768430 @default.
- W2890698739 cites W2064675550 @default.
- W2890698739 cites W2066134726 @default.
- W2890698739 cites W2097117768 @default.
- W2890698739 cites W2112796928 @default.
- W2890698739 cites W2143612262 @default.
- W2890698739 cites W2147768505 @default.
- W2890698739 cites W2155893237 @default.
- W2890698739 cites W2157331557 @default.
- W2890698739 cites W2410591237 @default.
- W2890698739 cites W2782522152 @default.
- W2890698739 cites W2919115771 @default.
- W2890698739 cites W2963956866 @default.
- W2890698739 doi "https://doi.org/10.23919/icif.2018.8455321" @default.
- W2890698739 hasPublicationYear "2018" @default.
- W2890698739 type Work @default.
- W2890698739 sameAs 2890698739 @default.
- W2890698739 citedByCount "10" @default.
- W2890698739 countsByYear W28906987392020 @default.
- W2890698739 countsByYear W28906987392021 @default.
- W2890698739 countsByYear W28906987392022 @default.
- W2890698739 countsByYear W28906987392023 @default.
- W2890698739 crossrefType "proceedings-article" @default.
- W2890698739 hasAuthorship W2890698739A5012031382 @default.
- W2890698739 hasAuthorship W2890698739A5025082018 @default.
- W2890698739 hasAuthorship W2890698739A5083730924 @default.
- W2890698739 hasConcept C108583219 @default.
- W2890698739 hasConcept C115961682 @default.
- W2890698739 hasConcept C119857082 @default.
- W2890698739 hasConcept C124101348 @default.
- W2890698739 hasConcept C154945302 @default.
- W2890698739 hasConcept C157657479 @default.
- W2890698739 hasConcept C162324750 @default.
- W2890698739 hasConcept C187736073 @default.
- W2890698739 hasConcept C2780226545 @default.
- W2890698739 hasConcept C2780451532 @default.
- W2890698739 hasConcept C33954974 @default.
- W2890698739 hasConcept C41008148 @default.
- W2890698739 hasConcept C75684735 @default.
- W2890698739 hasConceptScore W2890698739C108583219 @default.
- W2890698739 hasConceptScore W2890698739C115961682 @default.
- W2890698739 hasConceptScore W2890698739C119857082 @default.
- W2890698739 hasConceptScore W2890698739C124101348 @default.
- W2890698739 hasConceptScore W2890698739C154945302 @default.
- W2890698739 hasConceptScore W2890698739C157657479 @default.
- W2890698739 hasConceptScore W2890698739C162324750 @default.
- W2890698739 hasConceptScore W2890698739C187736073 @default.
- W2890698739 hasConceptScore W2890698739C2780226545 @default.
- W2890698739 hasConceptScore W2890698739C2780451532 @default.
- W2890698739 hasConceptScore W2890698739C33954974 @default.
- W2890698739 hasConceptScore W2890698739C41008148 @default.
- W2890698739 hasConceptScore W2890698739C75684735 @default.
- W2890698739 hasLocation W28906987391 @default.
- W2890698739 hasOpenAccess W2890698739 @default.
- W2890698739 hasPrimaryLocation W28906987391 @default.
- W2890698739 hasRelatedWork W2330246314 @default.
- W2890698739 hasRelatedWork W2775506363 @default.
- W2890698739 hasRelatedWork W2949362007 @default.
- W2890698739 hasRelatedWork W2949522393 @default.
- W2890698739 hasRelatedWork W2963177403 @default.
- W2890698739 hasRelatedWork W3088136942 @default.
- W2890698739 hasRelatedWork W4210416330 @default.
- W2890698739 hasRelatedWork W4283207562 @default.
- W2890698739 hasRelatedWork W4289422896 @default.
- W2890698739 hasRelatedWork W4290852288 @default.
- W2890698739 isParatext "false" @default.
- W2890698739 isRetracted "false" @default.
- W2890698739 magId "2890698739" @default.
- W2890698739 workType "article" @default.