Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890699684> ?p ?o ?g. }
- W2890699684 endingPage "296" @default.
- W2890699684 startingPage "284" @default.
- W2890699684 abstract "The Amazonian coast consists of extensive flood plains and plateaus characterized by a high discharge of water and sediment from the Amazon River. This wide landscape occurs under a tropical climate with heavy rains and high cloud cover, making it unsuitable for conventional mapping based on optical images. Additionally, the flat relief and vegetation structure of the Brazilian Amazon coast define an incoherent to partially coherent behavior for the microwave signal, rendering radargrammetric models more suitable for the three-dimensional mapping of its surface. This study aimed to assess the digital surface models (DSMs) provided by Cosmo-SkyMed (CSK) and TerraSAR-X (TSX) Stripmap datasets throughout the radargrammetric models from SARscape and Toutin. The DSMs were generated from SAR (synthetic aperture radar) data with an acquisition geometry that addressed the need for a compromise between the intersection angles and low temporal decorrelation. The radargrammetric SARscape and Toutin’s models were developed from different amounts of stereo ground control points (SGCP). The generated DSMs were evaluated considering a set of 40 independent checkpoints (ICP) measured by GNSS in the field, in their entirety and disaggregated by coastal environment. The vertical accuracy was based on the estimation of the discrepancies, bias and precision (standard deviation and root mean square error – RMSE), and the Taylor and Target diagrams were used for a more comprehensive comparison. In the vertical accuracy analysis using all ICPs measured in situ, the DSM obtained by the SARscape’s model from the CSK SAR data resulted in the lowest RMSE (4.34 m) and mean discrepancy (0.05 m), but Toutin’s model had the lowest standard deviation (2.58 m) of the discrepancies. The Taylor and Target diagrams showed fluctuations in accuracy that alternated the DSMs generated from the two types of SAR data, indicating that TSX produced more stable models and CSK produced better vertical accuracy. The Amazon Coastal Plateau and Fluvial Marine Terrace environments defined three-dimensional representations with lower RMSEs (better than 7.8 and 8.9 m, respectively), regardless of the type of SAR data or the radargrammetric model used. The worst performance, which was for the Fluvial Marine Plain, was influenced by the specific characteristics of this coastal environment, such as the structure of the mangrove vegetation and the shoreline. In general, the high resolution and good ability to revisit the SAR data used, together with the radargrammetric models, allowed for the accurate mapping of the flat relief of the Amazon coastal environments, providing detailed spatial information that can be acquired in severe rainfall conditions in a region of intense morphological dynamics." @default.
- W2890699684 created "2018-09-27" @default.
- W2890699684 creator A5039505107 @default.
- W2890699684 creator A5045611780 @default.
- W2890699684 creator A5069204785 @default.
- W2890699684 creator A5079890223 @default.
- W2890699684 creator A5080259643 @default.
- W2890699684 date "2018-11-01" @default.
- W2890699684 modified "2023-10-01" @default.
- W2890699684 title "Radargrammetric approaches to the flat relief of the amazon coast using COSMO-SkyMed and TerraSAR-X datasets" @default.
- W2890699684 cites W1525157036 @default.
- W2890699684 cites W1969423477 @default.
- W2890699684 cites W1982493705 @default.
- W2890699684 cites W1984752959 @default.
- W2890699684 cites W1985479415 @default.
- W2890699684 cites W1996938628 @default.
- W2890699684 cites W1998349299 @default.
- W2890699684 cites W2007695941 @default.
- W2890699684 cites W2009066556 @default.
- W2890699684 cites W2021816755 @default.
- W2890699684 cites W2027001053 @default.
- W2890699684 cites W2039017169 @default.
- W2890699684 cites W2040975251 @default.
- W2890699684 cites W2043254789 @default.
- W2890699684 cites W2055731461 @default.
- W2890699684 cites W2055992258 @default.
- W2890699684 cites W2056573494 @default.
- W2890699684 cites W2059472735 @default.
- W2890699684 cites W2059595935 @default.
- W2890699684 cites W2061225400 @default.
- W2890699684 cites W2066600408 @default.
- W2890699684 cites W2067326030 @default.
- W2890699684 cites W2069609746 @default.
- W2890699684 cites W2084744129 @default.
- W2890699684 cites W2090588307 @default.
- W2890699684 cites W2098852605 @default.
- W2890699684 cites W2106780395 @default.
- W2890699684 cites W2107318634 @default.
- W2890699684 cites W2125077255 @default.
- W2890699684 cites W2136642793 @default.
- W2890699684 cites W2154932568 @default.
- W2890699684 cites W2160281271 @default.
- W2890699684 cites W2169095385 @default.
- W2890699684 cites W2171466305 @default.
- W2890699684 cites W2404286957 @default.
- W2890699684 cites W2521777632 @default.
- W2890699684 cites W2591866702 @default.
- W2890699684 cites W4232505136 @default.
- W2890699684 cites W4251779129 @default.
- W2890699684 cites W766783176 @default.
- W2890699684 doi "https://doi.org/10.1016/j.isprsjprs.2018.09.001" @default.
- W2890699684 hasPublicationYear "2018" @default.
- W2890699684 type Work @default.
- W2890699684 sameAs 2890699684 @default.
- W2890699684 citedByCount "14" @default.
- W2890699684 countsByYear W28906996842018 @default.
- W2890699684 countsByYear W28906996842019 @default.
- W2890699684 countsByYear W28906996842020 @default.
- W2890699684 countsByYear W28906996842021 @default.
- W2890699684 countsByYear W28906996842022 @default.
- W2890699684 countsByYear W28906996842023 @default.
- W2890699684 crossrefType "journal-article" @default.
- W2890699684 hasAuthorship W2890699684A5039505107 @default.
- W2890699684 hasAuthorship W2890699684A5045611780 @default.
- W2890699684 hasAuthorship W2890699684A5069204785 @default.
- W2890699684 hasAuthorship W2890699684A5079890223 @default.
- W2890699684 hasAuthorship W2890699684A5080259643 @default.
- W2890699684 hasBestOaLocation W28906996842 @default.
- W2890699684 hasConcept C105795698 @default.
- W2890699684 hasConcept C111368507 @default.
- W2890699684 hasConcept C11413529 @default.
- W2890699684 hasConcept C119857082 @default.
- W2890699684 hasConcept C127313418 @default.
- W2890699684 hasConcept C139945424 @default.
- W2890699684 hasConcept C146849305 @default.
- W2890699684 hasConcept C153294291 @default.
- W2890699684 hasConcept C174943157 @default.
- W2890699684 hasConcept C177860922 @default.
- W2890699684 hasConcept C181843262 @default.
- W2890699684 hasConcept C18903297 @default.
- W2890699684 hasConcept C205649164 @default.
- W2890699684 hasConcept C22679943 @default.
- W2890699684 hasConcept C33923547 @default.
- W2890699684 hasConcept C39432304 @default.
- W2890699684 hasConcept C41008148 @default.
- W2890699684 hasConcept C535291247 @default.
- W2890699684 hasConcept C62649853 @default.
- W2890699684 hasConcept C86803240 @default.
- W2890699684 hasConcept C87360688 @default.
- W2890699684 hasConceptScore W2890699684C105795698 @default.
- W2890699684 hasConceptScore W2890699684C111368507 @default.
- W2890699684 hasConceptScore W2890699684C11413529 @default.
- W2890699684 hasConceptScore W2890699684C119857082 @default.
- W2890699684 hasConceptScore W2890699684C127313418 @default.
- W2890699684 hasConceptScore W2890699684C139945424 @default.
- W2890699684 hasConceptScore W2890699684C146849305 @default.
- W2890699684 hasConceptScore W2890699684C153294291 @default.
- W2890699684 hasConceptScore W2890699684C174943157 @default.