Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890706287> ?p ?o ?g. }
- W2890706287 endingPage "1417" @default.
- W2890706287 startingPage "1405" @default.
- W2890706287 abstract "The broad learning system (BLS) is an emerging approach for effective and efficient modeling of complex systems. The inputs are transferred and placed in the feature nodes, and then sent into the enhancement nodes for nonlinear transformation. The structure of a BLS can be extended in a wide sense. Incremental learning algorithms are designed for fast learning in broad expansion. Based on the typical BLSs, a novel recurrent BLS (RBLS) is proposed in this paper. The nodes in the enhancement units of the BLS are recurrently connected, for the purpose of capturing the dynamic characteristics of a time series. A sparse autoencoder is used to extract the features from the input instead of the randomly initialized weights. In this way, the RBLS retains the merit of fast computing and fits for processing sequential data. Motivated by the idea of fine-tuning in deep learning, the weights in the RBLS can be updated by conjugate gradient methods if the prediction errors are large. We exhibit the merits of our proposed model on several chaotic time series. Experimental results substantiate the effectiveness of the RBLS. For chaotic benchmark datasets, the RBLS achieves very small errors, and for the real-world dataset, the performance is satisfactory." @default.
- W2890706287 created "2018-09-27" @default.
- W2890706287 creator A5006965196 @default.
- W2890706287 creator A5032636287 @default.
- W2890706287 creator A5037428599 @default.
- W2890706287 creator A5074514063 @default.
- W2890706287 date "2020-04-01" @default.
- W2890706287 modified "2023-10-18" @default.
- W2890706287 title "Recurrent Broad Learning Systems for Time Series Prediction" @default.
- W2890706287 cites W1495476169 @default.
- W2890706287 cites W1964892656 @default.
- W2890706287 cites W1967150189 @default.
- W2890706287 cites W1987932920 @default.
- W2890706287 cites W2010680143 @default.
- W2890706287 cites W2030888282 @default.
- W2890706287 cites W2033117307 @default.
- W2890706287 cites W2039333275 @default.
- W2890706287 cites W2040731319 @default.
- W2890706287 cites W2058804598 @default.
- W2890706287 cites W2072599882 @default.
- W2890706287 cites W2084001690 @default.
- W2890706287 cites W2104893957 @default.
- W2890706287 cites W2111072639 @default.
- W2890706287 cites W2117014758 @default.
- W2890706287 cites W2118706537 @default.
- W2890706287 cites W2123223828 @default.
- W2890706287 cites W2130467234 @default.
- W2890706287 cites W2136922672 @default.
- W2890706287 cites W2153232138 @default.
- W2890706287 cites W2153635508 @default.
- W2890706287 cites W2161108110 @default.
- W2890706287 cites W2189422931 @default.
- W2890706287 cites W2279226407 @default.
- W2890706287 cites W2286961399 @default.
- W2890706287 cites W2314582146 @default.
- W2890706287 cites W2318004685 @default.
- W2890706287 cites W2344849981 @default.
- W2890706287 cites W2405206665 @default.
- W2890706287 cites W2476751262 @default.
- W2890706287 cites W2529867864 @default.
- W2890706287 cites W2560247988 @default.
- W2890706287 cites W2573526403 @default.
- W2890706287 cites W2587108256 @default.
- W2890706287 cites W2593430120 @default.
- W2890706287 cites W2738226240 @default.
- W2890706287 cites W2763583057 @default.
- W2890706287 cites W2779129326 @default.
- W2890706287 cites W2919115771 @default.
- W2890706287 doi "https://doi.org/10.1109/tcyb.2018.2863020" @default.
- W2890706287 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30207976" @default.
- W2890706287 hasPublicationYear "2020" @default.
- W2890706287 type Work @default.
- W2890706287 sameAs 2890706287 @default.
- W2890706287 citedByCount "145" @default.
- W2890706287 countsByYear W28907062872018 @default.
- W2890706287 countsByYear W28907062872019 @default.
- W2890706287 countsByYear W28907062872020 @default.
- W2890706287 countsByYear W28907062872021 @default.
- W2890706287 countsByYear W28907062872022 @default.
- W2890706287 countsByYear W28907062872023 @default.
- W2890706287 crossrefType "journal-article" @default.
- W2890706287 hasAuthorship W2890706287A5006965196 @default.
- W2890706287 hasAuthorship W2890706287A5032636287 @default.
- W2890706287 hasAuthorship W2890706287A5037428599 @default.
- W2890706287 hasAuthorship W2890706287A5074514063 @default.
- W2890706287 hasConcept C101738243 @default.
- W2890706287 hasConcept C104317684 @default.
- W2890706287 hasConcept C108583219 @default.
- W2890706287 hasConcept C11413529 @default.
- W2890706287 hasConcept C121332964 @default.
- W2890706287 hasConcept C13280743 @default.
- W2890706287 hasConcept C138885662 @default.
- W2890706287 hasConcept C143724316 @default.
- W2890706287 hasConcept C151730666 @default.
- W2890706287 hasConcept C153180895 @default.
- W2890706287 hasConcept C154945302 @default.
- W2890706287 hasConcept C158622935 @default.
- W2890706287 hasConcept C185592680 @default.
- W2890706287 hasConcept C185798385 @default.
- W2890706287 hasConcept C204241405 @default.
- W2890706287 hasConcept C205649164 @default.
- W2890706287 hasConcept C2776401178 @default.
- W2890706287 hasConcept C2777052490 @default.
- W2890706287 hasConcept C41008148 @default.
- W2890706287 hasConcept C41895202 @default.
- W2890706287 hasConcept C55493867 @default.
- W2890706287 hasConcept C62520636 @default.
- W2890706287 hasConcept C86803240 @default.
- W2890706287 hasConceptScore W2890706287C101738243 @default.
- W2890706287 hasConceptScore W2890706287C104317684 @default.
- W2890706287 hasConceptScore W2890706287C108583219 @default.
- W2890706287 hasConceptScore W2890706287C11413529 @default.
- W2890706287 hasConceptScore W2890706287C121332964 @default.
- W2890706287 hasConceptScore W2890706287C13280743 @default.
- W2890706287 hasConceptScore W2890706287C138885662 @default.
- W2890706287 hasConceptScore W2890706287C143724316 @default.
- W2890706287 hasConceptScore W2890706287C151730666 @default.
- W2890706287 hasConceptScore W2890706287C153180895 @default.