Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890707978> ?p ?o ?g. }
- W2890707978 endingPage "307" @default.
- W2890707978 startingPage "289" @default.
- W2890707978 abstract "The advent of connected devices and omnipresence of Internet have paved way for intruders to attack networks, which leads to cyber-attack, financial loss, information theft in healthcare, and cyber war. Hence, network security analytics has become an important area of concern and has gained intensive attention among researchers, off late, specifically in the domain of anomaly detection in network, which is considered crucial for network security. However, preliminary investigations have revealed that the existing approaches to detect anomalies in network are not effective enough, particularly to detect them in real time. The reason for the inefficacy of current approaches is mainly due the amassment of massive volumes of data though the connected devices. Therefore, it is crucial to propose a framework that effectively handles real time big data processing and detect anomalies in networks. In this regard, this paper attempts to address the issue of detecting anomalies in real time. Respectively, this paper has surveyed the state-of-the-art real-time big data processing technologies related to anomaly detection and the vital characteristics of associated machine learning algorithms. This paper begins with the explanation of essential contexts and taxonomy of real-time big data processing, anomalous detection, and machine learning algorithms, followed by the review of big data processing technologies. Finally, the identified research challenges of real-time big data processing in anomaly detection are discussed." @default.
- W2890707978 created "2018-09-27" @default.
- W2890707978 creator A5001400366 @default.
- W2890707978 creator A5015765492 @default.
- W2890707978 creator A5031927335 @default.
- W2890707978 creator A5090355098 @default.
- W2890707978 creator A5091401182 @default.
- W2890707978 creator A5091663602 @default.
- W2890707978 date "2019-04-01" @default.
- W2890707978 modified "2023-10-16" @default.
- W2890707978 title "Real-time big data processing for anomaly detection: A Survey" @default.
- W2890707978 cites W1908401874 @default.
- W2890707978 cites W1963802829 @default.
- W2890707978 cites W1967376128 @default.
- W2890707978 cites W1976239864 @default.
- W2890707978 cites W1976331960 @default.
- W2890707978 cites W1977366836 @default.
- W2890707978 cites W1990680872 @default.
- W2890707978 cites W2025001960 @default.
- W2890707978 cites W2044439547 @default.
- W2890707978 cites W2051245758 @default.
- W2890707978 cites W2072534270 @default.
- W2890707978 cites W2072750586 @default.
- W2890707978 cites W2080195234 @default.
- W2890707978 cites W2089554624 @default.
- W2890707978 cites W2089831283 @default.
- W2890707978 cites W2114060717 @default.
- W2890707978 cites W2122646361 @default.
- W2890707978 cites W2126623642 @default.
- W2890707978 cites W2129753516 @default.
- W2890707978 cites W2132068130 @default.
- W2890707978 cites W2132987460 @default.
- W2890707978 cites W2138189774 @default.
- W2890707978 cites W2149140091 @default.
- W2890707978 cites W2159128662 @default.
- W2890707978 cites W2159588611 @default.
- W2890707978 cites W2235987128 @default.
- W2890707978 cites W2258711515 @default.
- W2890707978 cites W2261525379 @default.
- W2890707978 cites W2266096763 @default.
- W2890707978 cites W2278186031 @default.
- W2890707978 cites W2287299127 @default.
- W2890707978 cites W2287394288 @default.
- W2890707978 cites W2300285892 @default.
- W2890707978 cites W2312490072 @default.
- W2890707978 cites W2329795475 @default.
- W2890707978 cites W2340139852 @default.
- W2890707978 cites W2340896621 @default.
- W2890707978 cites W2342408547 @default.
- W2890707978 cites W2342457036 @default.
- W2890707978 cites W2376436116 @default.
- W2890707978 cites W2403237691 @default.
- W2890707978 cites W2406349003 @default.
- W2890707978 cites W2461455694 @default.
- W2890707978 cites W2484021251 @default.
- W2890707978 cites W2512144135 @default.
- W2890707978 cites W2514072401 @default.
- W2890707978 cites W2519706319 @default.
- W2890707978 cites W2553230590 @default.
- W2890707978 cites W2554894595 @default.
- W2890707978 cites W2560528144 @default.
- W2890707978 cites W2561295579 @default.
- W2890707978 cites W2576683119 @default.
- W2890707978 cites W2583910470 @default.
- W2890707978 cites W2586137432 @default.
- W2890707978 cites W2586646478 @default.
- W2890707978 cites W2592646191 @default.
- W2890707978 cites W2593834585 @default.
- W2890707978 cites W2595543006 @default.
- W2890707978 cites W2599766447 @default.
- W2890707978 cites W2620661538 @default.
- W2890707978 cites W2623163150 @default.
- W2890707978 cites W2726150830 @default.
- W2890707978 cites W2750688159 @default.
- W2890707978 cites W2754182645 @default.
- W2890707978 cites W2756940441 @default.
- W2890707978 cites W2763473974 @default.
- W2890707978 cites W2770850510 @default.
- W2890707978 cites W2790257945 @default.
- W2890707978 cites W2790864385 @default.
- W2890707978 cites W2810596787 @default.
- W2890707978 cites W285122196 @default.
- W2890707978 cites W2883618409 @default.
- W2890707978 cites W2887371902 @default.
- W2890707978 cites W2963100393 @default.
- W2890707978 doi "https://doi.org/10.1016/j.ijinfomgt.2018.08.006" @default.
- W2890707978 hasPublicationYear "2019" @default.
- W2890707978 type Work @default.
- W2890707978 sameAs 2890707978 @default.
- W2890707978 citedByCount "218" @default.
- W2890707978 countsByYear W28907079782018 @default.
- W2890707978 countsByYear W28907079782019 @default.
- W2890707978 countsByYear W28907079782020 @default.
- W2890707978 countsByYear W28907079782021 @default.
- W2890707978 countsByYear W28907079782022 @default.
- W2890707978 countsByYear W28907079782023 @default.
- W2890707978 crossrefType "journal-article" @default.
- W2890707978 hasAuthorship W2890707978A5001400366 @default.