Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890715669> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2890715669 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2018Jump-starting neural network training for seismic problemsAuthors: Fantine HuotBiondo BiondiGregory BerozaFantine HuotStanford UniversitySearch for more papers by this author, Biondo BiondiStanford UniversitySearch for more papers by this author, and Gregory BerozaStanford UniversitySearch for more papers by this authorhttps://doi.org/10.1190/segam2018-2998567.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractDeep learning algorithms are immensely data-hungry and rely on large amounts of labeled data to achieve good performance. However the earth is intrinsically unlabeled and we are often confronted to fuzzy boundaries, uncertain labels, and absence of ground truth. Moreover, deep learning models do not always generalize well to conditions that are different from the ones encountered during training. In this context, it can be difficult to leverage deep learning algorithms for seismic problems. Herein we introduce strategies for overcoming these limitations, using synthetic data generation and transfer learning to jump-start the training of neural networks. We present this methodology through two case studies: earthquake detection using the Northern California Seismic Network (NCSN); and targeted noise filtering for ambient seismic noise recorded by a fiber optic array underneath Stanford campus.Presentation Date: Tuesday, October 16, 2018Start Time: 9:20:00 AMLocation: Poster Station 3Presentation Type: PosterKeywords: machine learning, neural networks, DAS (distributed acoustic sensors), earthquake, signal processingPermalink: https://doi.org/10.1190/segam2018-2998567.1FiguresReferencesRelatedDetailsCited byMicroseismic analysis over a single horizontal distributed acoustic sensing fiber using guided wavesAriel Lellouch, Bin Luo, Fantine Huot, Robert G. Clapp, Paige Given, Ettore Biondi, Tamas Nemeth, Kurt T. Nihei, and Biondo L. Biondi11 March 2022 | GEOPHYSICS, Vol. 87, No. 3A Literature Review10 December 2021Detecting microseismic events on DAS fiber with super-human accuracyFantine Huot, Ariel Lellouch, Paige Given, Robert G. Clapp, Biondo L. Biondi, Tamas Nemeth, and Kurt Nihei1 September 2021Elastic prestack seismic inversion through discrete cosine transform reparameterization and convolutional neural networksMattia Aleardi and Alessandro Salusti21 January 2021 | GEOPHYSICS, Vol. 86, No. 1Detecting earthquakes through telecom fiber using a convolutional neural networkFantine Huot and Biondo Biondi30 September 2020A Deep Transfer Learning Framework for Seismic Data Analysis: A Case Study on Bright Spot DetectionIEEE Transactions on Geoscience and Remote Sensing, Vol. 58, No. 5Automatic velocity analysis using convolutional neural network and transfer learningMin Jun Park and Mauricio D. Sacchi22 November 2019 | GEOPHYSICS, Vol. 85, No. 1Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning Analysis25 December 2019 | Remote Sensing, Vol. 12, No. 1Stratigraphy estimation from seismic data using deep learningFantine Huot, Robert Clapp, Biondo Biondi, Bruce Power, and Joe Stefani10 August 2019 SEG Technical Program Expanded Abstracts 2018ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2018 Pages: 5520 publication data© 2018 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 27 Aug 2018 CITATION INFORMATION Fantine Huot, Biondo Biondi, and Gregory Beroza, (2018), Jump-starting neural network training for seismic problems, SEG Technical Program Expanded Abstracts : 2191-2195. https://doi.org/10.1190/segam2018-2998567.1 Plain-Language Summary Keywordsmachine learningneural networksDAS (distributed acoustic sensors)earthquakesignal processingPDF DownloadLoading ..." @default.
- W2890715669 created "2018-09-27" @default.
- W2890715669 creator A5060147695 @default.
- W2890715669 creator A5080734082 @default.
- W2890715669 creator A5084849254 @default.
- W2890715669 date "2018-08-27" @default.
- W2890715669 modified "2023-09-25" @default.
- W2890715669 title "Jump-starting neural network training for seismic problems" @default.
- W2890715669 cites W1677182931 @default.
- W2890715669 cites W2022508996 @default.
- W2890715669 cites W2062118960 @default.
- W2890715669 cites W2108069432 @default.
- W2890715669 cites W2147768505 @default.
- W2890715669 cites W2160815625 @default.
- W2890715669 cites W2162741153 @default.
- W2890715669 cites W2165698076 @default.
- W2890715669 cites W2168013545 @default.
- W2890715669 cites W2394932179 @default.
- W2890715669 cites W2518481910 @default.
- W2890715669 cites W2746504655 @default.
- W2890715669 cites W2789512926 @default.
- W2890715669 doi "https://doi.org/10.1190/segam2018-2998567.1" @default.
- W2890715669 hasPublicationYear "2018" @default.
- W2890715669 type Work @default.
- W2890715669 sameAs 2890715669 @default.
- W2890715669 citedByCount "9" @default.
- W2890715669 countsByYear W28907156692019 @default.
- W2890715669 countsByYear W28907156692020 @default.
- W2890715669 countsByYear W28907156692021 @default.
- W2890715669 countsByYear W28907156692022 @default.
- W2890715669 crossrefType "proceedings-article" @default.
- W2890715669 hasAuthorship W2890715669A5060147695 @default.
- W2890715669 hasAuthorship W2890715669A5080734082 @default.
- W2890715669 hasAuthorship W2890715669A5084849254 @default.
- W2890715669 hasConcept C108583219 @default.
- W2890715669 hasConcept C11413529 @default.
- W2890715669 hasConcept C119857082 @default.
- W2890715669 hasConcept C127313418 @default.
- W2890715669 hasConcept C150899416 @default.
- W2890715669 hasConcept C151730666 @default.
- W2890715669 hasConcept C153083717 @default.
- W2890715669 hasConcept C154945302 @default.
- W2890715669 hasConcept C156273044 @default.
- W2890715669 hasConcept C158543913 @default.
- W2890715669 hasConcept C194232370 @default.
- W2890715669 hasConcept C21651689 @default.
- W2890715669 hasConcept C2779343474 @default.
- W2890715669 hasConcept C2984842247 @default.
- W2890715669 hasConcept C41008148 @default.
- W2890715669 hasConcept C50644808 @default.
- W2890715669 hasConcept C76155785 @default.
- W2890715669 hasConceptScore W2890715669C108583219 @default.
- W2890715669 hasConceptScore W2890715669C11413529 @default.
- W2890715669 hasConceptScore W2890715669C119857082 @default.
- W2890715669 hasConceptScore W2890715669C127313418 @default.
- W2890715669 hasConceptScore W2890715669C150899416 @default.
- W2890715669 hasConceptScore W2890715669C151730666 @default.
- W2890715669 hasConceptScore W2890715669C153083717 @default.
- W2890715669 hasConceptScore W2890715669C154945302 @default.
- W2890715669 hasConceptScore W2890715669C156273044 @default.
- W2890715669 hasConceptScore W2890715669C158543913 @default.
- W2890715669 hasConceptScore W2890715669C194232370 @default.
- W2890715669 hasConceptScore W2890715669C21651689 @default.
- W2890715669 hasConceptScore W2890715669C2779343474 @default.
- W2890715669 hasConceptScore W2890715669C2984842247 @default.
- W2890715669 hasConceptScore W2890715669C41008148 @default.
- W2890715669 hasConceptScore W2890715669C50644808 @default.
- W2890715669 hasConceptScore W2890715669C76155785 @default.
- W2890715669 hasLocation W28907156691 @default.
- W2890715669 hasOpenAccess W2890715669 @default.
- W2890715669 hasPrimaryLocation W28907156691 @default.
- W2890715669 hasRelatedWork W2946016983 @default.
- W2890715669 hasRelatedWork W2960456850 @default.
- W2890715669 hasRelatedWork W2980128178 @default.
- W2890715669 hasRelatedWork W3192840557 @default.
- W2890715669 hasRelatedWork W4213250359 @default.
- W2890715669 hasRelatedWork W4288040045 @default.
- W2890715669 hasRelatedWork W4312200629 @default.
- W2890715669 hasRelatedWork W4317565044 @default.
- W2890715669 hasRelatedWork W4380075502 @default.
- W2890715669 hasRelatedWork W4382286161 @default.
- W2890715669 isParatext "false" @default.
- W2890715669 isRetracted "false" @default.
- W2890715669 magId "2890715669" @default.
- W2890715669 workType "article" @default.