Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890716356> ?p ?o ?g. }
- W2890716356 abstract "Epigenetic modification has an effect on gene expression under the environmental alteration, but it does not change corresponding genome sequence. DNA methylation (DNAm) is one of the important epigenetic mechanisms. DNAm variations could be used as epigenetic markers to predict and account for the change of many human phenotypic traits, such as cancer, diabetes, and high blood pressure. In this study, we built deep neural network (DNN) regression models to account for interindividual variation in triglyceride concentrations measured at different visits of peripheral blood samples using epigenome-wide DNAm profiles.We used epigenome-wide DNAm profiles of before and after medication interventions (called pretreatment and posttreatment, respectively) to predict triglyceride concentrations for peripheral blood draws at visit 2 (using pretreatment data) and at visit 4 (using both pretreatment and posttreatment data). Our experimental results showed that DNN models can predict triglyceride concentrations for blood draws at visit 4 using pretreatment and posttreatment DNAm data more accurately than for blood draws at visit 2 using pretreatment DNAm data. Furthermore, we got the best prediction results when we used pretreatment DNAm data to predict triglyceride concentrations for blood draws at visit 4, which suggests a long-term epigenetic effect on phenotypic traits. We compared the prediction performances of our proposed DNN models with that of support vector machine (SVM). This comparison showed that our DNN models achieved better prediction performance than did SVM.We demonstrated the superiority of our proposed DNN models over the SVM model for predicting triglyceride concentrations. This study also suggests that the DNN approach has advantages over other traditional machine-learning methods to model high-dimensional epigenome-wide DNAm data and other genomic data." @default.
- W2890716356 created "2018-09-27" @default.
- W2890716356 creator A5024018042 @default.
- W2890716356 creator A5035024838 @default.
- W2890716356 creator A5059073200 @default.
- W2890716356 creator A5075801997 @default.
- W2890716356 creator A5090463221 @default.
- W2890716356 date "2018-09-01" @default.
- W2890716356 modified "2023-10-14" @default.
- W2890716356 title "A deep neural network based regression model for triglyceride concentrations prediction using epigenome-wide DNA methylation profiles" @default.
- W2890716356 cites W2081518434 @default.
- W2890716356 cites W2117539524 @default.
- W2890716356 cites W2152434143 @default.
- W2890716356 cites W2164229713 @default.
- W2890716356 cites W2171627975 @default.
- W2890716356 cites W2181388765 @default.
- W2890716356 cites W2467067181 @default.
- W2890716356 doi "https://doi.org/10.1186/s12919-018-0121-1" @default.
- W2890716356 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6157031" @default.
- W2890716356 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30263040" @default.
- W2890716356 hasPublicationYear "2018" @default.
- W2890716356 type Work @default.
- W2890716356 sameAs 2890716356 @default.
- W2890716356 citedByCount "7" @default.
- W2890716356 countsByYear W28907163562018 @default.
- W2890716356 countsByYear W28907163562019 @default.
- W2890716356 countsByYear W28907163562020 @default.
- W2890716356 countsByYear W28907163562023 @default.
- W2890716356 crossrefType "journal-article" @default.
- W2890716356 hasAuthorship W2890716356A5024018042 @default.
- W2890716356 hasAuthorship W2890716356A5035024838 @default.
- W2890716356 hasAuthorship W2890716356A5059073200 @default.
- W2890716356 hasAuthorship W2890716356A5075801997 @default.
- W2890716356 hasAuthorship W2890716356A5090463221 @default.
- W2890716356 hasBestOaLocation W28907163561 @default.
- W2890716356 hasConcept C104317684 @default.
- W2890716356 hasConcept C105795698 @default.
- W2890716356 hasConcept C117717151 @default.
- W2890716356 hasConcept C119857082 @default.
- W2890716356 hasConcept C12267149 @default.
- W2890716356 hasConcept C126322002 @default.
- W2890716356 hasConcept C150194340 @default.
- W2890716356 hasConcept C154945302 @default.
- W2890716356 hasConcept C190727270 @default.
- W2890716356 hasConcept C2775921022 @default.
- W2890716356 hasConcept C2778163477 @default.
- W2890716356 hasConcept C2778913445 @default.
- W2890716356 hasConcept C33288867 @default.
- W2890716356 hasConcept C33923547 @default.
- W2890716356 hasConcept C41008148 @default.
- W2890716356 hasConcept C41091548 @default.
- W2890716356 hasConcept C54355233 @default.
- W2890716356 hasConcept C60644358 @default.
- W2890716356 hasConcept C70721500 @default.
- W2890716356 hasConcept C71924100 @default.
- W2890716356 hasConcept C83546350 @default.
- W2890716356 hasConcept C86803240 @default.
- W2890716356 hasConceptScore W2890716356C104317684 @default.
- W2890716356 hasConceptScore W2890716356C105795698 @default.
- W2890716356 hasConceptScore W2890716356C117717151 @default.
- W2890716356 hasConceptScore W2890716356C119857082 @default.
- W2890716356 hasConceptScore W2890716356C12267149 @default.
- W2890716356 hasConceptScore W2890716356C126322002 @default.
- W2890716356 hasConceptScore W2890716356C150194340 @default.
- W2890716356 hasConceptScore W2890716356C154945302 @default.
- W2890716356 hasConceptScore W2890716356C190727270 @default.
- W2890716356 hasConceptScore W2890716356C2775921022 @default.
- W2890716356 hasConceptScore W2890716356C2778163477 @default.
- W2890716356 hasConceptScore W2890716356C2778913445 @default.
- W2890716356 hasConceptScore W2890716356C33288867 @default.
- W2890716356 hasConceptScore W2890716356C33923547 @default.
- W2890716356 hasConceptScore W2890716356C41008148 @default.
- W2890716356 hasConceptScore W2890716356C41091548 @default.
- W2890716356 hasConceptScore W2890716356C54355233 @default.
- W2890716356 hasConceptScore W2890716356C60644358 @default.
- W2890716356 hasConceptScore W2890716356C70721500 @default.
- W2890716356 hasConceptScore W2890716356C71924100 @default.
- W2890716356 hasConceptScore W2890716356C83546350 @default.
- W2890716356 hasConceptScore W2890716356C86803240 @default.
- W2890716356 hasIssue "S9" @default.
- W2890716356 hasLocation W28907163561 @default.
- W2890716356 hasLocation W28907163562 @default.
- W2890716356 hasLocation W28907163563 @default.
- W2890716356 hasLocation W28907163564 @default.
- W2890716356 hasLocation W28907163565 @default.
- W2890716356 hasOpenAccess W2890716356 @default.
- W2890716356 hasPrimaryLocation W28907163561 @default.
- W2890716356 hasRelatedWork W2021947280 @default.
- W2890716356 hasRelatedWork W2111466280 @default.
- W2890716356 hasRelatedWork W2117041810 @default.
- W2890716356 hasRelatedWork W2142309127 @default.
- W2890716356 hasRelatedWork W2482531029 @default.
- W2890716356 hasRelatedWork W2774005845 @default.
- W2890716356 hasRelatedWork W3043106598 @default.
- W2890716356 hasRelatedWork W3206107770 @default.
- W2890716356 hasRelatedWork W4293242102 @default.
- W2890716356 hasRelatedWork W4362734280 @default.
- W2890716356 hasVolume "12" @default.
- W2890716356 isParatext "false" @default.
- W2890716356 isRetracted "false" @default.