Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890718832> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2890718832 abstract "Advances of computing capability and increasing demand for analyzing data from complex systems in various engineering fields have made computer experiments an inevitable tool for exploring and optimizing systems. Physical experiments are very costly to conduct in many applications such as a cardiovascular system study or a rocket engine design. With the aid of high-performance computing, the cost for expensive physical experiments can be reduced dramatically by running the simulation codes on computers. Due to the deterministic nature of computer codes, Gaussian process model or kriging is widely used for interpolation and calibration.Chapter 1 of the thesis deals with model calibration using censored data. The purpose of model calibration is to use data from a physical experiment to adjust the computer model so that the predictions can become closer to reality. The classic Kennedy-O'Hagan approach is widely used for model calibration, which can account for the inadequacy of the computer model while simultaneously estimating the unknown calibration parameters. In many applications, the phenomenon of censoring occurs when the exact outcome of the physical experiment is not observed, but is only known to fall within a certain region. In such cases, the Kennedy-O'Hagan approach cannot be used directly, and we propose a method to incorporate the censoring information when performing model calibration. The method is applied to study the compression phenomenon of liquid inside a bottle. The results show significant improvement over the traditional calibration methods, especially when the number of censored observations is large.Chapter 2 proposes an interpolation technique which can be used with large and unstructured data. Kriging is widely used for interpolation of unstructured data because of its ability to produce confidence intervals for predictions. The model is fitted to the data using maximum likelihood or cross validation-based methods. Unfortunately, the fitting is expense for large data because one evaluation of the objective function requires $O(n^3)$ operations, where n is the size of the data. There exist other interpolation techniques such as inverse distance weighting (IDW), which doesn’t require any estimation and therefore can be easily used with large data. However, the performance of IDW can be significantly worse than kriging. In this chapter, we propose a kriging method that does not require any estimation from data and whose performance is much better than that of IDW. We also propose a novel approach to choose nuggets in kriging that can produce numerically stable results, which is important for applying the technique to unstructured data. A technique for adaptively choosing the kernels is also developed.Chapter 3 extends the automatic kriging proposed in Chapter 2 by exploiting the sequential nature of the adaptive modeling method. When more computing resource is available, we have the option to make estimates from adaptive nugget and adaptive kernel more accurate. A two-stage version of…" @default.
- W2890718832 created "2018-09-27" @default.
- W2890718832 creator A5012161116 @default.
- W2890718832 date "2017-07-28" @default.
- W2890718832 modified "2023-09-27" @default.
- W2890718832 title "Advances in Calibration and Interpolation: Censored and Big Data Applications" @default.
- W2890718832 hasPublicationYear "2017" @default.
- W2890718832 type Work @default.
- W2890718832 sameAs 2890718832 @default.
- W2890718832 citedByCount "0" @default.
- W2890718832 crossrefType "dissertation" @default.
- W2890718832 hasAuthorship W2890718832A5012161116 @default.
- W2890718832 hasConcept C104114177 @default.
- W2890718832 hasConcept C105795698 @default.
- W2890718832 hasConcept C113775141 @default.
- W2890718832 hasConcept C11413529 @default.
- W2890718832 hasConcept C116672817 @default.
- W2890718832 hasConcept C119857082 @default.
- W2890718832 hasConcept C121332964 @default.
- W2890718832 hasConcept C137668524 @default.
- W2890718832 hasConcept C137800194 @default.
- W2890718832 hasConcept C154945302 @default.
- W2890718832 hasConcept C163716315 @default.
- W2890718832 hasConcept C165838908 @default.
- W2890718832 hasConcept C33923547 @default.
- W2890718832 hasConcept C41008148 @default.
- W2890718832 hasConcept C44154836 @default.
- W2890718832 hasConcept C61326573 @default.
- W2890718832 hasConcept C62520636 @default.
- W2890718832 hasConcept C81692654 @default.
- W2890718832 hasConcept C87466663 @default.
- W2890718832 hasConceptScore W2890718832C104114177 @default.
- W2890718832 hasConceptScore W2890718832C105795698 @default.
- W2890718832 hasConceptScore W2890718832C113775141 @default.
- W2890718832 hasConceptScore W2890718832C11413529 @default.
- W2890718832 hasConceptScore W2890718832C116672817 @default.
- W2890718832 hasConceptScore W2890718832C119857082 @default.
- W2890718832 hasConceptScore W2890718832C121332964 @default.
- W2890718832 hasConceptScore W2890718832C137668524 @default.
- W2890718832 hasConceptScore W2890718832C137800194 @default.
- W2890718832 hasConceptScore W2890718832C154945302 @default.
- W2890718832 hasConceptScore W2890718832C163716315 @default.
- W2890718832 hasConceptScore W2890718832C165838908 @default.
- W2890718832 hasConceptScore W2890718832C33923547 @default.
- W2890718832 hasConceptScore W2890718832C41008148 @default.
- W2890718832 hasConceptScore W2890718832C44154836 @default.
- W2890718832 hasConceptScore W2890718832C61326573 @default.
- W2890718832 hasConceptScore W2890718832C62520636 @default.
- W2890718832 hasConceptScore W2890718832C81692654 @default.
- W2890718832 hasConceptScore W2890718832C87466663 @default.
- W2890718832 hasLocation W28907188321 @default.
- W2890718832 hasOpenAccess W2890718832 @default.
- W2890718832 hasPrimaryLocation W28907188321 @default.
- W2890718832 hasRelatedWork W1030614780 @default.
- W2890718832 hasRelatedWork W1527269775 @default.
- W2890718832 hasRelatedWork W1925226756 @default.
- W2890718832 hasRelatedWork W1968389535 @default.
- W2890718832 hasRelatedWork W1968523686 @default.
- W2890718832 hasRelatedWork W2052406593 @default.
- W2890718832 hasRelatedWork W2139002679 @default.
- W2890718832 hasRelatedWork W2429108336 @default.
- W2890718832 hasRelatedWork W2468770775 @default.
- W2890718832 hasRelatedWork W2623242234 @default.
- W2890718832 hasRelatedWork W2803618915 @default.
- W2890718832 hasRelatedWork W2945669086 @default.
- W2890718832 hasRelatedWork W2964298367 @default.
- W2890718832 hasRelatedWork W2972724690 @default.
- W2890718832 hasRelatedWork W3043452652 @default.
- W2890718832 hasRelatedWork W3047149318 @default.
- W2890718832 hasRelatedWork W3121824907 @default.
- W2890718832 hasRelatedWork W3150328553 @default.
- W2890718832 hasRelatedWork W3151859097 @default.
- W2890718832 hasRelatedWork W2155568441 @default.
- W2890718832 isParatext "false" @default.
- W2890718832 isRetracted "false" @default.
- W2890718832 magId "2890718832" @default.
- W2890718832 workType "dissertation" @default.