Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890720450> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2890720450 endingPage "1068" @default.
- W2890720450 startingPage "1057" @default.
- W2890720450 abstract "Field permeability of Hot Mix Asphalt (HMA) needs to be controlled to prevent excessive ingress of water into asphalt pavements, which leads to premature failure. Existing literature shows scatter in the prediction of field permeability values and relationships between factors affecting permeability are complex and are not known precisely. The objective of this paper is to present the analysis and modelling of field permeability of HMA with artificial neural networks (ANN). Permeability data from field testing at five sites, along with materials and mix data are presented. Preliminary statistical analysis to identify correlations and significant factors were conducted. A three-layer ANN was built and trained with part of the data and it was validated and also tested on two separate sets of data. The performance results indicated excellent prediction ability of the neural network. Experiments were conducted to improve the model, and the relative importance of the different factors was evaluated. Gradation and air voids were identified as two of the primary factors affecting field permeability. It is recommended that ANNs be considered to be used on a regular basis for predicting field permeability, particularly because field permeability tests are processes that require a considerable amount of time and resources." @default.
- W2890720450 created "2018-09-27" @default.
- W2890720450 creator A5032484273 @default.
- W2890720450 creator A5055414868 @default.
- W2890720450 date "2018-09-14" @default.
- W2890720450 modified "2023-09-26" @default.
- W2890720450 title "Artificial neural network-based prediction of field permeability of hot mix asphalt pavement layers" @default.
- W2890720450 cites W1978836391 @default.
- W2890720450 cites W1986112488 @default.
- W2890720450 cites W2003756933 @default.
- W2890720450 cites W2007950067 @default.
- W2890720450 cites W2018678917 @default.
- W2890720450 cites W2077872662 @default.
- W2890720450 cites W2087070363 @default.
- W2890720450 cites W2099327582 @default.
- W2890720450 cites W2109838451 @default.
- W2890720450 cites W2138364347 @default.
- W2890720450 cites W2148789439 @default.
- W2890720450 cites W2155482699 @default.
- W2890720450 cites W2160218817 @default.
- W2890720450 cites W4300402905 @default.
- W2890720450 doi "https://doi.org/10.1080/10298436.2018.1519189" @default.
- W2890720450 hasPublicationYear "2018" @default.
- W2890720450 type Work @default.
- W2890720450 sameAs 2890720450 @default.
- W2890720450 citedByCount "11" @default.
- W2890720450 countsByYear W28907204502019 @default.
- W2890720450 countsByYear W28907204502020 @default.
- W2890720450 countsByYear W28907204502021 @default.
- W2890720450 countsByYear W28907204502022 @default.
- W2890720450 countsByYear W28907204502023 @default.
- W2890720450 crossrefType "journal-article" @default.
- W2890720450 hasAuthorship W2890720450A5032484273 @default.
- W2890720450 hasAuthorship W2890720450A5055414868 @default.
- W2890720450 hasConcept C120882062 @default.
- W2890720450 hasConcept C127413603 @default.
- W2890720450 hasConcept C154945302 @default.
- W2890720450 hasConcept C159985019 @default.
- W2890720450 hasConcept C168056786 @default.
- W2890720450 hasConcept C187320778 @default.
- W2890720450 hasConcept C192562407 @default.
- W2890720450 hasConcept C29314403 @default.
- W2890720450 hasConcept C2986189917 @default.
- W2890720450 hasConcept C39432304 @default.
- W2890720450 hasConcept C41008148 @default.
- W2890720450 hasConcept C41625074 @default.
- W2890720450 hasConcept C50644808 @default.
- W2890720450 hasConcept C54355233 @default.
- W2890720450 hasConcept C86803240 @default.
- W2890720450 hasConceptScore W2890720450C120882062 @default.
- W2890720450 hasConceptScore W2890720450C127413603 @default.
- W2890720450 hasConceptScore W2890720450C154945302 @default.
- W2890720450 hasConceptScore W2890720450C159985019 @default.
- W2890720450 hasConceptScore W2890720450C168056786 @default.
- W2890720450 hasConceptScore W2890720450C187320778 @default.
- W2890720450 hasConceptScore W2890720450C192562407 @default.
- W2890720450 hasConceptScore W2890720450C29314403 @default.
- W2890720450 hasConceptScore W2890720450C2986189917 @default.
- W2890720450 hasConceptScore W2890720450C39432304 @default.
- W2890720450 hasConceptScore W2890720450C41008148 @default.
- W2890720450 hasConceptScore W2890720450C41625074 @default.
- W2890720450 hasConceptScore W2890720450C50644808 @default.
- W2890720450 hasConceptScore W2890720450C54355233 @default.
- W2890720450 hasConceptScore W2890720450C86803240 @default.
- W2890720450 hasIssue "9" @default.
- W2890720450 hasLocation W28907204501 @default.
- W2890720450 hasOpenAccess W2890720450 @default.
- W2890720450 hasPrimaryLocation W28907204501 @default.
- W2890720450 hasRelatedWork W1985133938 @default.
- W2890720450 hasRelatedWork W2355252533 @default.
- W2890720450 hasRelatedWork W2355764344 @default.
- W2890720450 hasRelatedWork W2370507269 @default.
- W2890720450 hasRelatedWork W2373736688 @default.
- W2890720450 hasRelatedWork W2391581648 @default.
- W2890720450 hasRelatedWork W2758111525 @default.
- W2890720450 hasRelatedWork W2790244822 @default.
- W2890720450 hasRelatedWork W2904561811 @default.
- W2890720450 hasRelatedWork W3159291936 @default.
- W2890720450 hasVolume "21" @default.
- W2890720450 isParatext "false" @default.
- W2890720450 isRetracted "false" @default.
- W2890720450 magId "2890720450" @default.
- W2890720450 workType "article" @default.