Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890727668> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2890727668 endingPage "164" @default.
- W2890727668 startingPage "156" @default.
- W2890727668 abstract "Lymphovascular invasion (LVI) and tumor angiogenesis are correlated with metastasis, cancer recurrence and poor patient survival. In most of the cases, the LVI quantification and angiogenic analysis is based on microvessel segmentation and density estimation in immunohistochemically (IHC) stained tissues. However, in routine H&E stained images, the microvessels display a high level of heterogeneity in terms of size, shape, morphology and texture which makes microvessel segmentation a non-trivial task. Manual delineation of microvessels for biomarker analysis is labor-intensive, time consuming, irreproducible and can suffer from subjectivity among pathologists. Moreover, it is often beneficial to account for the uncertainty of a prediction when making a diagnosis. To address these challenges, we proposed a framework for microvessel segmentation in H&E stained histology images. The framework extends DeepLabV3+ by using an improved dice coefficient based custom loss function and also incorporating an uncertainty prediction mechanism. The proposed method uses an aligned Xception model, followed by atrous spatial pyramid pooling for feature extraction at multiple scales. This architecture counters the challenge of segmenting blood vessels of varying morphological appearance. To incorporate uncertainty, random transformations are introduced at test time for a superior segmentation result and simultaneous uncertainty map generation, highlighting ambiguous regions. The method is evaluated using 1167 images of size (512times 512) pixels, extracted from 13 WSIs of oral squamous cell carcinoma (OSCC) tissue at 20x magnification. The proposed net-work achieves state-of-the-art performance compared to current semantic segmentation deep neural networks (FCN-8, U-Net, SegNet and DeepLabV3+)." @default.
- W2890727668 created "2018-09-27" @default.
- W2890727668 creator A5007545621 @default.
- W2890727668 creator A5011079056 @default.
- W2890727668 creator A5017459474 @default.
- W2890727668 creator A5034385371 @default.
- W2890727668 creator A5069179055 @default.
- W2890727668 date "2018-01-01" @default.
- W2890727668 modified "2023-09-29" @default.
- W2890727668 title "Uncertainty Driven Pooling Network for Microvessel Segmentation in Routine Histology Images" @default.
- W2890727668 cites W1901129140 @default.
- W2890727668 cites W1903029394 @default.
- W2890727668 cites W1939738412 @default.
- W2890727668 cites W2144026946 @default.
- W2890727668 cites W2282915343 @default.
- W2890727668 cites W2312404985 @default.
- W2890727668 cites W2412782625 @default.
- W2890727668 cites W2531409750 @default.
- W2890727668 cites W2673389996 @default.
- W2890727668 cites W2771248105 @default.
- W2890727668 cites W2794447976 @default.
- W2890727668 cites W2796409016 @default.
- W2890727668 cites W2805735218 @default.
- W2890727668 cites W2964309882 @default.
- W2890727668 doi "https://doi.org/10.1007/978-3-030-00949-6_19" @default.
- W2890727668 hasPublicationYear "2018" @default.
- W2890727668 type Work @default.
- W2890727668 sameAs 2890727668 @default.
- W2890727668 citedByCount "12" @default.
- W2890727668 countsByYear W28907276682019 @default.
- W2890727668 countsByYear W28907276682020 @default.
- W2890727668 countsByYear W28907276682021 @default.
- W2890727668 countsByYear W28907276682022 @default.
- W2890727668 countsByYear W28907276682023 @default.
- W2890727668 crossrefType "book-chapter" @default.
- W2890727668 hasAuthorship W2890727668A5007545621 @default.
- W2890727668 hasAuthorship W2890727668A5011079056 @default.
- W2890727668 hasAuthorship W2890727668A5017459474 @default.
- W2890727668 hasAuthorship W2890727668A5034385371 @default.
- W2890727668 hasAuthorship W2890727668A5069179055 @default.
- W2890727668 hasBestOaLocation W28907276682 @default.
- W2890727668 hasConcept C124504099 @default.
- W2890727668 hasConcept C142724271 @default.
- W2890727668 hasConcept C153180895 @default.
- W2890727668 hasConcept C154945302 @default.
- W2890727668 hasConcept C204232928 @default.
- W2890727668 hasConcept C2776436680 @default.
- W2890727668 hasConcept C31972630 @default.
- W2890727668 hasConcept C41008148 @default.
- W2890727668 hasConcept C70437156 @default.
- W2890727668 hasConcept C71924100 @default.
- W2890727668 hasConcept C89600930 @default.
- W2890727668 hasConceptScore W2890727668C124504099 @default.
- W2890727668 hasConceptScore W2890727668C142724271 @default.
- W2890727668 hasConceptScore W2890727668C153180895 @default.
- W2890727668 hasConceptScore W2890727668C154945302 @default.
- W2890727668 hasConceptScore W2890727668C204232928 @default.
- W2890727668 hasConceptScore W2890727668C2776436680 @default.
- W2890727668 hasConceptScore W2890727668C31972630 @default.
- W2890727668 hasConceptScore W2890727668C41008148 @default.
- W2890727668 hasConceptScore W2890727668C70437156 @default.
- W2890727668 hasConceptScore W2890727668C71924100 @default.
- W2890727668 hasConceptScore W2890727668C89600930 @default.
- W2890727668 hasLocation W28907276681 @default.
- W2890727668 hasLocation W28907276682 @default.
- W2890727668 hasOpenAccess W2890727668 @default.
- W2890727668 hasPrimaryLocation W28907276681 @default.
- W2890727668 hasRelatedWork W1669643531 @default.
- W2890727668 hasRelatedWork W1700740617 @default.
- W2890727668 hasRelatedWork W1721780360 @default.
- W2890727668 hasRelatedWork W2110230079 @default.
- W2890727668 hasRelatedWork W2117664411 @default.
- W2890727668 hasRelatedWork W2117933325 @default.
- W2890727668 hasRelatedWork W2122581818 @default.
- W2890727668 hasRelatedWork W2159066190 @default.
- W2890727668 hasRelatedWork W2739874619 @default.
- W2890727668 hasRelatedWork W1967061043 @default.
- W2890727668 isParatext "false" @default.
- W2890727668 isRetracted "false" @default.
- W2890727668 magId "2890727668" @default.
- W2890727668 workType "book-chapter" @default.