Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890729396> ?p ?o ?g. }
- W2890729396 endingPage "500" @default.
- W2890729396 startingPage "491" @default.
- W2890729396 abstract "To interpret data visualizations, people must determine how visual features map onto concepts. For example, to interpret colormaps, people must determine how dimensions of color (e.g., lightness, hue) map onto quantities of a given measure (e.g., brain activity, correlation magnitude). This process is easier when the encoded mappings in the visualization match people's predictions of how visual features will map onto concepts, their inferred mappings. To harness this principle in visualization design, it is necessary to understand what factors determine people's inferred mappings. In this study, we investigated how inferred color-quantity mappings for colormap data visualizations were influenced by the background color. Prior literature presents seemingly conflicting accounts of how the background color affects inferred color-quantity mappings. The present results help resolve those conflicts, demonstrating that sometimes the background has an effect and sometimes it does not, depending on whether the colormap appears to vary in opacity. When there is no apparent variation in opacity, participants infer that darker colors map to larger quantities (dark-is-more bias). As apparent variation in opacity increases, participants become biased toward inferring that more opaque colors map to larger quantities (opaque-is-more bias). These biases work together on light backgrounds and conflict on dark backgrounds. Under such conflicts, the opaque-is-more bias can negate, or even supersede the dark-is-more bias. The results suggest that if a design goal is to produce colormaps that match people's inferred mappings and are robust to changes in background color, it is beneficial to use colormaps that will not appear to vary in opacity on any background color, and to encode larger quantities in darker colors." @default.
- W2890729396 created "2018-09-27" @default.
- W2890729396 creator A5010499463 @default.
- W2890729396 creator A5017444173 @default.
- W2890729396 creator A5026549128 @default.
- W2890729396 creator A5058764721 @default.
- W2890729396 creator A5064306421 @default.
- W2890729396 creator A5082668404 @default.
- W2890729396 creator A5089227387 @default.
- W2890729396 date "2019-01-01" @default.
- W2890729396 modified "2023-10-16" @default.
- W2890729396 title "A Heuristic Approach to Value-Driven Evaluation of Visualizations" @default.
- W2890729396 cites W166454861 @default.
- W2890729396 cites W1972250810 @default.
- W2890729396 cites W1977953443 @default.
- W2890729396 cites W1981355240 @default.
- W2890729396 cites W1987135115 @default.
- W2890729396 cites W2006322477 @default.
- W2890729396 cites W2019714146 @default.
- W2890729396 cites W2052398640 @default.
- W2890729396 cites W2055175765 @default.
- W2890729396 cites W2057615322 @default.
- W2890729396 cites W2057718781 @default.
- W2890729396 cites W2058203255 @default.
- W2890729396 cites W2079420557 @default.
- W2890729396 cites W2083896568 @default.
- W2890729396 cites W2095631681 @default.
- W2890729396 cites W2113547941 @default.
- W2890729396 cites W2121003513 @default.
- W2890729396 cites W2130774862 @default.
- W2890729396 cites W2134578561 @default.
- W2890729396 cites W2138658268 @default.
- W2890729396 cites W2141033859 @default.
- W2890729396 cites W2144320230 @default.
- W2890729396 cites W2155733062 @default.
- W2890729396 cites W2157887077 @default.
- W2890729396 cites W2162598207 @default.
- W2890729396 cites W2168440500 @default.
- W2890729396 cites W2169936492 @default.
- W2890729396 cites W2170686791 @default.
- W2890729396 cites W2310963243 @default.
- W2890729396 cites W2407529156 @default.
- W2890729396 cites W2529391596 @default.
- W2890729396 cites W2592282157 @default.
- W2890729396 cites W52809394 @default.
- W2890729396 doi "https://doi.org/10.1109/tvcg.2018.2865146" @default.
- W2890729396 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30188826" @default.
- W2890729396 hasPublicationYear "2019" @default.
- W2890729396 type Work @default.
- W2890729396 sameAs 2890729396 @default.
- W2890729396 citedByCount "40" @default.
- W2890729396 countsByYear W28907293962019 @default.
- W2890729396 countsByYear W28907293962020 @default.
- W2890729396 countsByYear W28907293962021 @default.
- W2890729396 countsByYear W28907293962022 @default.
- W2890729396 countsByYear W28907293962023 @default.
- W2890729396 crossrefType "journal-article" @default.
- W2890729396 hasAuthorship W2890729396A5010499463 @default.
- W2890729396 hasAuthorship W2890729396A5017444173 @default.
- W2890729396 hasAuthorship W2890729396A5026549128 @default.
- W2890729396 hasAuthorship W2890729396A5058764721 @default.
- W2890729396 hasAuthorship W2890729396A5064306421 @default.
- W2890729396 hasAuthorship W2890729396A5082668404 @default.
- W2890729396 hasAuthorship W2890729396A5089227387 @default.
- W2890729396 hasBestOaLocation W28907293962 @default.
- W2890729396 hasConcept C120665830 @default.
- W2890729396 hasConcept C121332964 @default.
- W2890729396 hasConcept C126537357 @default.
- W2890729396 hasConcept C154945302 @default.
- W2890729396 hasConcept C15744967 @default.
- W2890729396 hasConcept C169760540 @default.
- W2890729396 hasConcept C172367668 @default.
- W2890729396 hasConcept C193601281 @default.
- W2890729396 hasConcept C26760741 @default.
- W2890729396 hasConcept C2778334786 @default.
- W2890729396 hasConcept C31972630 @default.
- W2890729396 hasConcept C36464697 @default.
- W2890729396 hasConcept C41008148 @default.
- W2890729396 hasConcept C44870925 @default.
- W2890729396 hasConcept C60056205 @default.
- W2890729396 hasConceptScore W2890729396C120665830 @default.
- W2890729396 hasConceptScore W2890729396C121332964 @default.
- W2890729396 hasConceptScore W2890729396C126537357 @default.
- W2890729396 hasConceptScore W2890729396C154945302 @default.
- W2890729396 hasConceptScore W2890729396C15744967 @default.
- W2890729396 hasConceptScore W2890729396C169760540 @default.
- W2890729396 hasConceptScore W2890729396C172367668 @default.
- W2890729396 hasConceptScore W2890729396C193601281 @default.
- W2890729396 hasConceptScore W2890729396C26760741 @default.
- W2890729396 hasConceptScore W2890729396C2778334786 @default.
- W2890729396 hasConceptScore W2890729396C31972630 @default.
- W2890729396 hasConceptScore W2890729396C36464697 @default.
- W2890729396 hasConceptScore W2890729396C41008148 @default.
- W2890729396 hasConceptScore W2890729396C44870925 @default.
- W2890729396 hasConceptScore W2890729396C60056205 @default.
- W2890729396 hasFunder F4320338291 @default.
- W2890729396 hasIssue "1" @default.
- W2890729396 hasLocation W28907293961 @default.