Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890729512> ?p ?o ?g. }
- W2890729512 endingPage "3091" @default.
- W2890729512 startingPage "3091" @default.
- W2890729512 abstract "Inertial Navigation System (INS) is often combined with Global Navigation Satellite System (GNSS) to increase the positioning accuracy and continuity. In complex urban environments, GNSS/INS integrated systems suffer not only from dynamical model errors but also GNSS observation gross errors. However, it is hard to distinguish dynamical model errors from observation gross errors because the observation residuals are affected by both of them in a loosely-coupled integrated navigation system. In this research, an optimal Radial Basis Function (RBF) neural network-enhanced adaptive robust Kalman filter (KF) method is proposed to isolate and mitigate the influence of the two types of errors. In the proposed method, firstly a test statistic based on Mahalanobis distance is treated as judging index to achieve fault detection. Then, an optimal RBF neural network strategy is trained on-line by the optimality principle. The network's output will bring benefits in recognizing the above two kinds of filtering fault and the system is able to choose a robust or adaptive Kalman filtering method autonomously. A field vehicle test in urban areas with a low-cost GNSS/INS integrated system indicates that two types of errors simulated in complex urban areas have been detected, distinguished and eliminated with the proposed scheme, success rate reached up to 92%. In particular, we also find that the novel neural network strategy can improve the overall position accuracy during GNSS signal short-term outages." @default.
- W2890729512 created "2018-09-27" @default.
- W2890729512 creator A5032764121 @default.
- W2890729512 creator A5058899333 @default.
- W2890729512 creator A5083807152 @default.
- W2890729512 creator A5084560640 @default.
- W2890729512 creator A5088111395 @default.
- W2890729512 date "2018-09-13" @default.
- W2890729512 modified "2023-09-29" @default.
- W2890729512 title "An Optimal Radial Basis Function Neural Network Enhanced Adaptive Robust Kalman Filter for GNSS/INS Integrated Systems in Complex Urban Areas" @default.
- W2890729512 cites W1565084527 @default.
- W2890729512 cites W1963581687 @default.
- W2890729512 cites W1973581271 @default.
- W2890729512 cites W1981314715 @default.
- W2890729512 cites W1989909882 @default.
- W2890729512 cites W1994691007 @default.
- W2890729512 cites W2000997774 @default.
- W2890729512 cites W2005338860 @default.
- W2890729512 cites W2013054356 @default.
- W2890729512 cites W2014289136 @default.
- W2890729512 cites W2047842548 @default.
- W2890729512 cites W2049857321 @default.
- W2890729512 cites W2052746091 @default.
- W2890729512 cites W2066523316 @default.
- W2890729512 cites W2076924667 @default.
- W2890729512 cites W2163624649 @default.
- W2890729512 cites W2225087728 @default.
- W2890729512 cites W2326421185 @default.
- W2890729512 cites W2474110984 @default.
- W2890729512 cites W2565010549 @default.
- W2890729512 cites W2587647538 @default.
- W2890729512 cites W2753943696 @default.
- W2890729512 cites W2790040946 @default.
- W2890729512 cites W3015492663 @default.
- W2890729512 cites W957214112 @default.
- W2890729512 doi "https://doi.org/10.3390/s18093091" @default.
- W2890729512 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6164912" @default.
- W2890729512 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30217105" @default.
- W2890729512 hasPublicationYear "2018" @default.
- W2890729512 type Work @default.
- W2890729512 sameAs 2890729512 @default.
- W2890729512 citedByCount "32" @default.
- W2890729512 countsByYear W28907295122018 @default.
- W2890729512 countsByYear W28907295122019 @default.
- W2890729512 countsByYear W28907295122020 @default.
- W2890729512 countsByYear W28907295122021 @default.
- W2890729512 countsByYear W28907295122022 @default.
- W2890729512 countsByYear W28907295122023 @default.
- W2890729512 crossrefType "journal-article" @default.
- W2890729512 hasAuthorship W2890729512A5032764121 @default.
- W2890729512 hasAuthorship W2890729512A5058899333 @default.
- W2890729512 hasAuthorship W2890729512A5083807152 @default.
- W2890729512 hasAuthorship W2890729512A5084560640 @default.
- W2890729512 hasAuthorship W2890729512A5088111395 @default.
- W2890729512 hasBestOaLocation W28907295121 @default.
- W2890729512 hasConcept C128651787 @default.
- W2890729512 hasConcept C14279187 @default.
- W2890729512 hasConcept C154945302 @default.
- W2890729512 hasConcept C157286648 @default.
- W2890729512 hasConcept C16345878 @default.
- W2890729512 hasConcept C2524010 @default.
- W2890729512 hasConcept C2775924081 @default.
- W2890729512 hasConcept C2777891301 @default.
- W2890729512 hasConcept C2778027091 @default.
- W2890729512 hasConcept C33923547 @default.
- W2890729512 hasConcept C41008148 @default.
- W2890729512 hasConcept C47446073 @default.
- W2890729512 hasConcept C50644808 @default.
- W2890729512 hasConcept C60229501 @default.
- W2890729512 hasConcept C76155785 @default.
- W2890729512 hasConcept C79403827 @default.
- W2890729512 hasConceptScore W2890729512C128651787 @default.
- W2890729512 hasConceptScore W2890729512C14279187 @default.
- W2890729512 hasConceptScore W2890729512C154945302 @default.
- W2890729512 hasConceptScore W2890729512C157286648 @default.
- W2890729512 hasConceptScore W2890729512C16345878 @default.
- W2890729512 hasConceptScore W2890729512C2524010 @default.
- W2890729512 hasConceptScore W2890729512C2775924081 @default.
- W2890729512 hasConceptScore W2890729512C2777891301 @default.
- W2890729512 hasConceptScore W2890729512C2778027091 @default.
- W2890729512 hasConceptScore W2890729512C33923547 @default.
- W2890729512 hasConceptScore W2890729512C41008148 @default.
- W2890729512 hasConceptScore W2890729512C47446073 @default.
- W2890729512 hasConceptScore W2890729512C50644808 @default.
- W2890729512 hasConceptScore W2890729512C60229501 @default.
- W2890729512 hasConceptScore W2890729512C76155785 @default.
- W2890729512 hasConceptScore W2890729512C79403827 @default.
- W2890729512 hasFunder F4320322769 @default.
- W2890729512 hasIssue "9" @default.
- W2890729512 hasLocation W28907295121 @default.
- W2890729512 hasLocation W28907295122 @default.
- W2890729512 hasLocation W28907295123 @default.
- W2890729512 hasLocation W28907295124 @default.
- W2890729512 hasOpenAccess W2890729512 @default.
- W2890729512 hasPrimaryLocation W28907295121 @default.
- W2890729512 hasRelatedWork W1961937144 @default.
- W2890729512 hasRelatedWork W2783323062 @default.
- W2890729512 hasRelatedWork W2911684682 @default.