Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890732316> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2890732316 endingPage "522" @default.
- W2890732316 startingPage "515" @default.
- W2890732316 abstract "Model-based segmentation (MBS) has been successfully used for the fully automatic segmentation of anatomical structures in medical images with well defined gray values due to its ability to incorporate prior knowledge about the organ shape. However, the robust and accurate detection of boundary points required for the MBS is still a challenge for organs with inhomogeneous appearance such as the prostate and magnetic resonance (MR) images, where the image contrast can vary greatly due to the use of different acquisition protocols and scanners at different clinical sites. In this paper, we propose a novel boundary detection approach and apply it to the segmentation of the whole prostate in MR images. We formulate boundary detection as a regression task, where a convolutional neural network is trained to predict the distances between a surface mesh and the corresponding boundary points. We have evaluated our method on the Prostate MR Image Segmentation 2012 challenge data set with the results showing that the new boundary detection approach can detect boundaries more robustly with respect to contrast and appearance variations and more accurately than previously used features. With an average boundary distance of 1.71 mm and a Dice similarity coefficient of 90.5%, our method was able to segment the prostate more accurately on average than a second human observer and placed first out of 40 entries submitted to the challenge at the writing of this paper." @default.
- W2890732316 created "2018-09-27" @default.
- W2890732316 creator A5022253148 @default.
- W2890732316 creator A5027686327 @default.
- W2890732316 creator A5035800983 @default.
- W2890732316 creator A5055312613 @default.
- W2890732316 creator A5076515875 @default.
- W2890732316 date "2018-01-01" @default.
- W2890732316 modified "2023-09-26" @default.
- W2890732316 title "Deep Learning-Based Boundary Detection for Model-Based Segmentation with Application to MR Prostate Segmentation" @default.
- W2890732316 cites W2000084830 @default.
- W2890732316 cites W2005129295 @default.
- W2890732316 cites W2106033751 @default.
- W2890732316 cites W2116462678 @default.
- W2890732316 cites W2135981539 @default.
- W2890732316 cites W2171963641 @default.
- W2890732316 cites W2318872361 @default.
- W2890732316 cites W3023609596 @default.
- W2890732316 doi "https://doi.org/10.1007/978-3-030-00937-3_59" @default.
- W2890732316 hasPublicationYear "2018" @default.
- W2890732316 type Work @default.
- W2890732316 sameAs 2890732316 @default.
- W2890732316 citedByCount "16" @default.
- W2890732316 countsByYear W28907323162018 @default.
- W2890732316 countsByYear W28907323162019 @default.
- W2890732316 countsByYear W28907323162020 @default.
- W2890732316 countsByYear W28907323162021 @default.
- W2890732316 countsByYear W28907323162022 @default.
- W2890732316 countsByYear W28907323162023 @default.
- W2890732316 crossrefType "book-chapter" @default.
- W2890732316 hasAuthorship W2890732316A5022253148 @default.
- W2890732316 hasAuthorship W2890732316A5027686327 @default.
- W2890732316 hasAuthorship W2890732316A5035800983 @default.
- W2890732316 hasAuthorship W2890732316A5055312613 @default.
- W2890732316 hasAuthorship W2890732316A5076515875 @default.
- W2890732316 hasConcept C103278499 @default.
- W2890732316 hasConcept C115961682 @default.
- W2890732316 hasConcept C124504099 @default.
- W2890732316 hasConcept C134306372 @default.
- W2890732316 hasConcept C153180895 @default.
- W2890732316 hasConcept C154945302 @default.
- W2890732316 hasConcept C163892561 @default.
- W2890732316 hasConcept C31972630 @default.
- W2890732316 hasConcept C33923547 @default.
- W2890732316 hasConcept C41008148 @default.
- W2890732316 hasConcept C62354387 @default.
- W2890732316 hasConcept C81363708 @default.
- W2890732316 hasConcept C89600930 @default.
- W2890732316 hasConceptScore W2890732316C103278499 @default.
- W2890732316 hasConceptScore W2890732316C115961682 @default.
- W2890732316 hasConceptScore W2890732316C124504099 @default.
- W2890732316 hasConceptScore W2890732316C134306372 @default.
- W2890732316 hasConceptScore W2890732316C153180895 @default.
- W2890732316 hasConceptScore W2890732316C154945302 @default.
- W2890732316 hasConceptScore W2890732316C163892561 @default.
- W2890732316 hasConceptScore W2890732316C31972630 @default.
- W2890732316 hasConceptScore W2890732316C33923547 @default.
- W2890732316 hasConceptScore W2890732316C41008148 @default.
- W2890732316 hasConceptScore W2890732316C62354387 @default.
- W2890732316 hasConceptScore W2890732316C81363708 @default.
- W2890732316 hasConceptScore W2890732316C89600930 @default.
- W2890732316 hasLocation W28907323161 @default.
- W2890732316 hasOpenAccess W2890732316 @default.
- W2890732316 hasPrimaryLocation W28907323161 @default.
- W2890732316 hasRelatedWork W1669643531 @default.
- W2890732316 hasRelatedWork W1982826852 @default.
- W2890732316 hasRelatedWork W2005437358 @default.
- W2890732316 hasRelatedWork W2008656436 @default.
- W2890732316 hasRelatedWork W2023558673 @default.
- W2890732316 hasRelatedWork W2039154422 @default.
- W2890732316 hasRelatedWork W2110230079 @default.
- W2890732316 hasRelatedWork W2134924024 @default.
- W2890732316 hasRelatedWork W2517104666 @default.
- W2890732316 hasRelatedWork W4200528772 @default.
- W2890732316 isParatext "false" @default.
- W2890732316 isRetracted "false" @default.
- W2890732316 magId "2890732316" @default.
- W2890732316 workType "book-chapter" @default.