Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890732922> ?p ?o ?g. }
- W2890732922 endingPage "1167" @default.
- W2890732922 startingPage "1155" @default.
- W2890732922 abstract "Scene classification of remote sensing images has drawn great attention because of its wide applications. In this paper, with the guidance of the human visual system (HVS), we explore the attention mechanism and propose a novel end-to-end attention recurrent convolutional network (ARCNet) for scene classification. It can learn to focus selectively on some key regions or locations and just process them at high-level features, thereby discarding the noncritical information and promoting the classification performance. The contributions of this paper are threefold. First, we design a novel recurrent attention structure to squeeze high-level semantic and spatial features into several simplex vectors for the reduction of learning parameters. Second, an end-to-end network named ARCNet is proposed to adaptively select a series of attention regions and then to generate powerful predictions by learning to process them sequentially. Third, we construct a new data set named OPTIMAL-31, which contains more categories than popular data sets and gives researchers an extra platform to validate their algorithms. The experimental results demonstrate that our model makes great promotion in comparison with the state-of-the-art approaches." @default.
- W2890732922 created "2018-09-27" @default.
- W2890732922 creator A5035508615 @default.
- W2890732922 creator A5068918243 @default.
- W2890732922 creator A5078114143 @default.
- W2890732922 creator A5083783069 @default.
- W2890732922 date "2019-02-01" @default.
- W2890732922 modified "2023-10-16" @default.
- W2890732922 title "Scene Classification With Recurrent Attention of VHR Remote Sensing Images" @default.
- W2890732922 cites W1576332977 @default.
- W2890732922 cites W1584663654 @default.
- W2890732922 cites W1963500125 @default.
- W2890732922 cites W1980038761 @default.
- W2890732922 cites W1989316905 @default.
- W2890732922 cites W2001123951 @default.
- W2890732922 cites W2005368619 @default.
- W2890732922 cites W2006603039 @default.
- W2890732922 cites W2019370496 @default.
- W2890732922 cites W2024106491 @default.
- W2890732922 cites W2067178723 @default.
- W2890732922 cites W2070452328 @default.
- W2890732922 cites W2073201137 @default.
- W2890732922 cites W2085630556 @default.
- W2890732922 cites W2086866337 @default.
- W2890732922 cites W2098642880 @default.
- W2890732922 cites W2098676252 @default.
- W2890732922 cites W2104520867 @default.
- W2890732922 cites W2122282653 @default.
- W2890732922 cites W2122710056 @default.
- W2890732922 cites W2143354507 @default.
- W2890732922 cites W2194775991 @default.
- W2890732922 cites W2248805833 @default.
- W2890732922 cites W2253590344 @default.
- W2890732922 cites W2268837224 @default.
- W2890732922 cites W2291068538 @default.
- W2890732922 cites W2293447946 @default.
- W2890732922 cites W2321627895 @default.
- W2890732922 cites W2341018344 @default.
- W2890732922 cites W2342880667 @default.
- W2890732922 cites W2343251476 @default.
- W2890732922 cites W2347115704 @default.
- W2890732922 cites W2411876745 @default.
- W2890732922 cites W2470786530 @default.
- W2890732922 cites W2512351403 @default.
- W2890732922 cites W2519420704 @default.
- W2890732922 cites W2552955500 @default.
- W2890732922 cites W2600889608 @default.
- W2890732922 cites W2607558879 @default.
- W2890732922 cites W2612114597 @default.
- W2890732922 cites W2620429297 @default.
- W2890732922 cites W2749439257 @default.
- W2890732922 cites W2764012408 @default.
- W2890732922 cites W3103856189 @default.
- W2890732922 cites W3105577662 @default.
- W2890732922 cites W40885937 @default.
- W2890732922 doi "https://doi.org/10.1109/tgrs.2018.2864987" @default.
- W2890732922 hasPublicationYear "2019" @default.
- W2890732922 type Work @default.
- W2890732922 sameAs 2890732922 @default.
- W2890732922 citedByCount "408" @default.
- W2890732922 countsByYear W28907329222018 @default.
- W2890732922 countsByYear W28907329222019 @default.
- W2890732922 countsByYear W28907329222020 @default.
- W2890732922 countsByYear W28907329222021 @default.
- W2890732922 countsByYear W28907329222022 @default.
- W2890732922 countsByYear W28907329222023 @default.
- W2890732922 crossrefType "journal-article" @default.
- W2890732922 hasAuthorship W2890732922A5035508615 @default.
- W2890732922 hasAuthorship W2890732922A5068918243 @default.
- W2890732922 hasAuthorship W2890732922A5078114143 @default.
- W2890732922 hasAuthorship W2890732922A5083783069 @default.
- W2890732922 hasConcept C111919701 @default.
- W2890732922 hasConcept C115961682 @default.
- W2890732922 hasConcept C119857082 @default.
- W2890732922 hasConcept C120665830 @default.
- W2890732922 hasConcept C121332964 @default.
- W2890732922 hasConcept C153180895 @default.
- W2890732922 hasConcept C154945302 @default.
- W2890732922 hasConcept C177264268 @default.
- W2890732922 hasConcept C192209626 @default.
- W2890732922 hasConcept C199360897 @default.
- W2890732922 hasConcept C26517878 @default.
- W2890732922 hasConcept C2780801425 @default.
- W2890732922 hasConcept C38652104 @default.
- W2890732922 hasConcept C41008148 @default.
- W2890732922 hasConcept C75294576 @default.
- W2890732922 hasConcept C98045186 @default.
- W2890732922 hasConceptScore W2890732922C111919701 @default.
- W2890732922 hasConceptScore W2890732922C115961682 @default.
- W2890732922 hasConceptScore W2890732922C119857082 @default.
- W2890732922 hasConceptScore W2890732922C120665830 @default.
- W2890732922 hasConceptScore W2890732922C121332964 @default.
- W2890732922 hasConceptScore W2890732922C153180895 @default.
- W2890732922 hasConceptScore W2890732922C154945302 @default.
- W2890732922 hasConceptScore W2890732922C177264268 @default.
- W2890732922 hasConceptScore W2890732922C192209626 @default.
- W2890732922 hasConceptScore W2890732922C199360897 @default.
- W2890732922 hasConceptScore W2890732922C26517878 @default.