Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890740717> ?p ?o ?g. }
- W2890740717 endingPage "4786" @default.
- W2890740717 startingPage "4773" @default.
- W2890740717 abstract "The acquired industrial data often contain missing outputs because of the irregularities of complicated industrial environment, which make the outputs of the training dataset incomplete. In this paper, a semi-supervised sparse Bayesian regression model is proposed for dealing with the incomplete outputs problem by employing a variational inference technique. Within the settings of specific hierarchical priors over the missing outputs, in this paper, we derive the posterior probability distribution over the uncertain variables including the missing outputs. Given that the posterior distribution is not analytically tractable, a hybrid learning procedure is designed for combining the variational inference with a gradient-based method to obtain optimal approximate posteriors. To verify the performance of the proposed method, a number of comparative experiments are conducted and analyzed by using the datasets (including artificial and real world ones) coming with different proportions of missing outputs. Compared to the existing semi-supervised regression approaches, we demonstrated the effectiveness of the proposed method." @default.
- W2890740717 created "2018-09-27" @default.
- W2890740717 creator A5003799782 @default.
- W2890740717 creator A5024970317 @default.
- W2890740717 creator A5046597133 @default.
- W2890740717 date "2020-11-01" @default.
- W2890740717 modified "2023-10-17" @default.
- W2890740717 title "A Novel Semi-Supervised Sparse Bayesian Regression Based on Variational Inference for Industrial Datasets With Incomplete Outputs" @default.
- W2890740717 cites W112711160 @default.
- W2890740717 cites W130979836 @default.
- W2890740717 cites W148464236 @default.
- W2890740717 cites W1504955719 @default.
- W2890740717 cites W1506806321 @default.
- W2890740717 cites W1531948468 @default.
- W2890740717 cites W1605413054 @default.
- W2890740717 cites W1648445109 @default.
- W2890740717 cites W170527909 @default.
- W2890740717 cites W2008004206 @default.
- W2890740717 cites W2011307992 @default.
- W2890740717 cites W2012805954 @default.
- W2890740717 cites W2013810580 @default.
- W2890740717 cites W2033171367 @default.
- W2890740717 cites W2035165454 @default.
- W2890740717 cites W2035331133 @default.
- W2890740717 cites W2037411416 @default.
- W2890740717 cites W2039216248 @default.
- W2890740717 cites W2048679005 @default.
- W2890740717 cites W2064633509 @default.
- W2890740717 cites W2078381696 @default.
- W2890740717 cites W2107710506 @default.
- W2890740717 cites W2110316582 @default.
- W2890740717 cites W2111700528 @default.
- W2890740717 cites W2115067547 @default.
- W2890740717 cites W2115896184 @default.
- W2890740717 cites W2134905716 @default.
- W2890740717 cites W2136504847 @default.
- W2890740717 cites W2137854933 @default.
- W2890740717 cites W2147526029 @default.
- W2890740717 cites W2167137426 @default.
- W2890740717 cites W2167504810 @default.
- W2890740717 cites W2170938446 @default.
- W2890740717 cites W2191204677 @default.
- W2890740717 cites W2226450201 @default.
- W2890740717 cites W2278171434 @default.
- W2890740717 cites W2319748043 @default.
- W2890740717 cites W2520510166 @default.
- W2890740717 cites W2741433593 @default.
- W2890740717 cites W2912934387 @default.
- W2890740717 cites W2949416428 @default.
- W2890740717 cites W53987483 @default.
- W2890740717 cites W745184511 @default.
- W2890740717 doi "https://doi.org/10.1109/tsmc.2018.2864752" @default.
- W2890740717 hasPublicationYear "2020" @default.
- W2890740717 type Work @default.
- W2890740717 sameAs 2890740717 @default.
- W2890740717 citedByCount "8" @default.
- W2890740717 countsByYear W28907407172020 @default.
- W2890740717 countsByYear W28907407172022 @default.
- W2890740717 countsByYear W28907407172023 @default.
- W2890740717 crossrefType "journal-article" @default.
- W2890740717 hasAuthorship W2890740717A5003799782 @default.
- W2890740717 hasAuthorship W2890740717A5024970317 @default.
- W2890740717 hasAuthorship W2890740717A5046597133 @default.
- W2890740717 hasConcept C105795698 @default.
- W2890740717 hasConcept C107673813 @default.
- W2890740717 hasConcept C119857082 @default.
- W2890740717 hasConcept C154945302 @default.
- W2890740717 hasConcept C160234255 @default.
- W2890740717 hasConcept C177769412 @default.
- W2890740717 hasConcept C2776214188 @default.
- W2890740717 hasConcept C33923547 @default.
- W2890740717 hasConcept C37903108 @default.
- W2890740717 hasConcept C41008148 @default.
- W2890740717 hasConcept C57830394 @default.
- W2890740717 hasConcept C83546350 @default.
- W2890740717 hasConcept C9357733 @default.
- W2890740717 hasConceptScore W2890740717C105795698 @default.
- W2890740717 hasConceptScore W2890740717C107673813 @default.
- W2890740717 hasConceptScore W2890740717C119857082 @default.
- W2890740717 hasConceptScore W2890740717C154945302 @default.
- W2890740717 hasConceptScore W2890740717C160234255 @default.
- W2890740717 hasConceptScore W2890740717C177769412 @default.
- W2890740717 hasConceptScore W2890740717C2776214188 @default.
- W2890740717 hasConceptScore W2890740717C33923547 @default.
- W2890740717 hasConceptScore W2890740717C37903108 @default.
- W2890740717 hasConceptScore W2890740717C41008148 @default.
- W2890740717 hasConceptScore W2890740717C57830394 @default.
- W2890740717 hasConceptScore W2890740717C83546350 @default.
- W2890740717 hasConceptScore W2890740717C9357733 @default.
- W2890740717 hasFunder F4320321001 @default.
- W2890740717 hasFunder F4320335787 @default.
- W2890740717 hasIssue "11" @default.
- W2890740717 hasLocation W28907407171 @default.
- W2890740717 hasOpenAccess W2890740717 @default.
- W2890740717 hasPrimaryLocation W28907407171 @default.
- W2890740717 hasRelatedWork W126842942 @default.
- W2890740717 hasRelatedWork W2162457363 @default.
- W2890740717 hasRelatedWork W2344767500 @default.