Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890741540> ?p ?o ?g. }
- W2890741540 abstract "Information fusion includes the integration of data for situational understanding. As a situation unfolds, maintaining awareness depends on diverse collections of data. In complex and dynamic scenarios, human operators face the difficult task of choosing which data to collect next. Hence, there is a need for multilayered fusion processes that exploit multiple models and levels of abstraction for understanding and sense-making Data collection has its roots in sensor management; however, there is an analogous need for data management - such as the incorporation of public domain data. Mature sensor management includes methods to utilize platform, sensor, and scene modeling so as to guide the user for future data collection. Additionally, these physics-based models could be a method to guide human-derived information models. Using the Data Fusion Information Group Model (DFIG), we develop an equivalent method for diffusion control. This paper focuses on recent techniques in statistical relational learning (SRL), Markov logic networks (MLN), and ontologies to support the control diffusion of data sensing to answer user queries." @default.
- W2890741540 created "2018-09-27" @default.
- W2890741540 creator A5015078987 @default.
- W2890741540 creator A5020857688 @default.
- W2890741540 creator A5023894377 @default.
- W2890741540 creator A5048332271 @default.
- W2890741540 creator A5064323671 @default.
- W2890741540 date "2018-07-01" @default.
- W2890741540 modified "2023-09-25" @default.
- W2890741540 title "Control Diffusion of Information Collection for Situation Understanding Using Boosting MLNs" @default.
- W2890741540 cites W1199156107 @default.
- W2890741540 cites W1538192045 @default.
- W2890741540 cites W1563088657 @default.
- W2890741540 cites W1585529040 @default.
- W2890741540 cites W1604179321 @default.
- W2890741540 cites W1678356000 @default.
- W2890741540 cites W1976172966 @default.
- W2890741540 cites W1990170267 @default.
- W2890741540 cites W2011082703 @default.
- W2890741540 cites W2020617621 @default.
- W2890741540 cites W2021602734 @default.
- W2890741540 cites W2023984401 @default.
- W2890741540 cites W2051941592 @default.
- W2890741540 cites W2076080066 @default.
- W2890741540 cites W2080522017 @default.
- W2890741540 cites W2090761873 @default.
- W2890741540 cites W2091125641 @default.
- W2890741540 cites W2097117010 @default.
- W2890741540 cites W2101335378 @default.
- W2890741540 cites W2104345001 @default.
- W2890741540 cites W2125922627 @default.
- W2890741540 cites W2126185296 @default.
- W2890741540 cites W2126815430 @default.
- W2890741540 cites W2127639213 @default.
- W2890741540 cites W2138891390 @default.
- W2890741540 cites W2139291442 @default.
- W2890741540 cites W2141014624 @default.
- W2890741540 cites W2144429462 @default.
- W2890741540 cites W2149612380 @default.
- W2890741540 cites W2150475393 @default.
- W2890741540 cites W2150678881 @default.
- W2890741540 cites W2155772159 @default.
- W2890741540 cites W2169818402 @default.
- W2890741540 cites W2267631676 @default.
- W2890741540 cites W2269469255 @default.
- W2890741540 cites W2332071383 @default.
- W2890741540 cites W2470908931 @default.
- W2890741540 cites W2531498086 @default.
- W2890741540 cites W625957030 @default.
- W2890741540 doi "https://doi.org/10.23919/icif.2018.8455262" @default.
- W2890741540 hasPublicationYear "2018" @default.
- W2890741540 type Work @default.
- W2890741540 sameAs 2890741540 @default.
- W2890741540 citedByCount "9" @default.
- W2890741540 countsByYear W28907415402019 @default.
- W2890741540 countsByYear W28907415402021 @default.
- W2890741540 countsByYear W28907415402022 @default.
- W2890741540 crossrefType "proceedings-article" @default.
- W2890741540 hasAuthorship W2890741540A5015078987 @default.
- W2890741540 hasAuthorship W2890741540A5020857688 @default.
- W2890741540 hasAuthorship W2890741540A5023894377 @default.
- W2890741540 hasAuthorship W2890741540A5048332271 @default.
- W2890741540 hasAuthorship W2890741540A5064323671 @default.
- W2890741540 hasConcept C105795698 @default.
- W2890741540 hasConcept C119857082 @default.
- W2890741540 hasConcept C124101348 @default.
- W2890741540 hasConcept C127413603 @default.
- W2890741540 hasConcept C133462117 @default.
- W2890741540 hasConcept C134306372 @default.
- W2890741540 hasConcept C145804949 @default.
- W2890741540 hasConcept C146978453 @default.
- W2890741540 hasConcept C165696696 @default.
- W2890741540 hasConcept C1668388 @default.
- W2890741540 hasConcept C2522767166 @default.
- W2890741540 hasConcept C33923547 @default.
- W2890741540 hasConcept C33954974 @default.
- W2890741540 hasConcept C36503486 @default.
- W2890741540 hasConcept C38652104 @default.
- W2890741540 hasConcept C41008148 @default.
- W2890741540 hasConcept C46686674 @default.
- W2890741540 hasConcept C67186912 @default.
- W2890741540 hasConcept C77088390 @default.
- W2890741540 hasConceptScore W2890741540C105795698 @default.
- W2890741540 hasConceptScore W2890741540C119857082 @default.
- W2890741540 hasConceptScore W2890741540C124101348 @default.
- W2890741540 hasConceptScore W2890741540C127413603 @default.
- W2890741540 hasConceptScore W2890741540C133462117 @default.
- W2890741540 hasConceptScore W2890741540C134306372 @default.
- W2890741540 hasConceptScore W2890741540C145804949 @default.
- W2890741540 hasConceptScore W2890741540C146978453 @default.
- W2890741540 hasConceptScore W2890741540C165696696 @default.
- W2890741540 hasConceptScore W2890741540C1668388 @default.
- W2890741540 hasConceptScore W2890741540C2522767166 @default.
- W2890741540 hasConceptScore W2890741540C33923547 @default.
- W2890741540 hasConceptScore W2890741540C33954974 @default.
- W2890741540 hasConceptScore W2890741540C36503486 @default.
- W2890741540 hasConceptScore W2890741540C38652104 @default.
- W2890741540 hasConceptScore W2890741540C41008148 @default.
- W2890741540 hasConceptScore W2890741540C46686674 @default.
- W2890741540 hasConceptScore W2890741540C67186912 @default.