Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890741686> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2890741686 abstract "Work with Python and powerful open source tools such as Gensim and spaCy to perform modern text analysis, natural language processing, and computational linguistics algorithms.About This BookDiscover the open source Python text analysis ecosystem, using spaCy, Gensim, scikit-learn, and KerasHands-on text analysis with Python, featuring natural language processing and computational linguistics algorithmsLearn deep learning techniques for text analysisWho This Book Is ForThis book is for you if you want to dive in, hands-first, into the interesting world of text analysis and NLP, and you're ready to work with the rich Python ecosystem of tools and datasets waiting for you!What You Will LearnWhy text analysis is important in our modern ageUnderstand NLP terminology and get to know the Python tools and datasetsLearn how to pre-process and clean textual dataConvert textual data into vector space representationsUsing spaCy to process textTrain your own NLP models for computational linguisticsUse statistical learning and Topic Modeling algorithms for text, using Gensim and scikit-learnEmploy deep learning techniques for text analysis using KerasIn DetailModern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data.This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy.You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning.This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis.Style and approachThe book teaches NLP from the angle of a practitioner as well as that of a student. This is a tad unusual, but given the enormous speed at which new algorithms and approaches travel from scientific beginnings to industrial implementation, first principles can be clarified with the help of entirely practical examples." @default.
- W2890741686 created "2018-09-27" @default.
- W2890741686 creator A5067698928 @default.
- W2890741686 date "2018-06-29" @default.
- W2890741686 modified "2023-09-27" @default.
- W2890741686 title "Natural Language Processing and Computational Linguistics" @default.
- W2890741686 hasPublicationYear "2018" @default.
- W2890741686 type Work @default.
- W2890741686 sameAs 2890741686 @default.
- W2890741686 citedByCount "1" @default.
- W2890741686 countsByYear W28907416862020 @default.
- W2890741686 crossrefType "book" @default.
- W2890741686 hasAuthorship W2890741686A5067698928 @default.
- W2890741686 hasConcept C138885662 @default.
- W2890741686 hasConcept C154945302 @default.
- W2890741686 hasConcept C155092808 @default.
- W2890741686 hasConcept C195324797 @default.
- W2890741686 hasConcept C199360897 @default.
- W2890741686 hasConcept C204321447 @default.
- W2890741686 hasConcept C2779500292 @default.
- W2890741686 hasConcept C41008148 @default.
- W2890741686 hasConcept C41895202 @default.
- W2890741686 hasConcept C519991488 @default.
- W2890741686 hasConcept C547195049 @default.
- W2890741686 hasConceptScore W2890741686C138885662 @default.
- W2890741686 hasConceptScore W2890741686C154945302 @default.
- W2890741686 hasConceptScore W2890741686C155092808 @default.
- W2890741686 hasConceptScore W2890741686C195324797 @default.
- W2890741686 hasConceptScore W2890741686C199360897 @default.
- W2890741686 hasConceptScore W2890741686C204321447 @default.
- W2890741686 hasConceptScore W2890741686C2779500292 @default.
- W2890741686 hasConceptScore W2890741686C41008148 @default.
- W2890741686 hasConceptScore W2890741686C41895202 @default.
- W2890741686 hasConceptScore W2890741686C519991488 @default.
- W2890741686 hasConceptScore W2890741686C547195049 @default.
- W2890741686 hasLocation W28907416861 @default.
- W2890741686 hasOpenAccess W2890741686 @default.
- W2890741686 hasPrimaryLocation W28907416861 @default.
- W2890741686 hasRelatedWork W1656490720 @default.
- W2890741686 hasRelatedWork W2460999112 @default.
- W2890741686 hasRelatedWork W2537472606 @default.
- W2890741686 hasRelatedWork W2747840490 @default.
- W2890741686 hasRelatedWork W2761048258 @default.
- W2890741686 hasRelatedWork W2767625489 @default.
- W2890741686 hasRelatedWork W2778834316 @default.
- W2890741686 hasRelatedWork W2803657496 @default.
- W2890741686 hasRelatedWork W2898761039 @default.
- W2890741686 hasRelatedWork W2911579795 @default.
- W2890741686 hasRelatedWork W2913099421 @default.
- W2890741686 hasRelatedWork W2945776867 @default.
- W2890741686 hasRelatedWork W2954935926 @default.
- W2890741686 hasRelatedWork W2976735527 @default.
- W2890741686 hasRelatedWork W2980625652 @default.
- W2890741686 hasRelatedWork W3161591992 @default.
- W2890741686 hasRelatedWork W3162149541 @default.
- W2890741686 hasRelatedWork W3163783789 @default.
- W2890741686 hasRelatedWork W3187031798 @default.
- W2890741686 hasRelatedWork W3193321391 @default.
- W2890741686 isParatext "false" @default.
- W2890741686 isRetracted "false" @default.
- W2890741686 magId "2890741686" @default.
- W2890741686 workType "book" @default.