Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890746145> ?p ?o ?g. }
- W2890746145 endingPage "704" @default.
- W2890746145 startingPage "669" @default.
- W2890746145 abstract "Technical Traders adopt mathematical methods to formulate various technical trading rules on their trading strategies. This paper utilises two unique datasets—individual and market tick-by-tick data—to disclose the categories and characteristics of technical traders’ strategies in Chinese rebar futures market. Firstly, we use a simple multiple regression model to filter technical traders in individual dataset. By using market dataset to generate dummy signals according to six popular kinds of technical rules, we created dummy trading directions as benchmark for real trading actions. Based on the similarity between dummy signals with different technical rules and traders’ real actions, we employ k-means algorithm to classify technical traders. Through these empirical works, technical traders in my dataset are classified into 11 groups. Finally, on the basis of 11 clusters’ coordinates, the features of technical strategies in each group are summarised." @default.
- W2890746145 created "2018-09-27" @default.
- W2890746145 creator A5050336875 @default.
- W2890746145 date "2018-09-10" @default.
- W2890746145 modified "2023-09-25" @default.
- W2890746145 title "Technical Trading Behaviour: Evidence from Chinese Rebar Futures Market" @default.
- W2890746145 cites W1765051938 @default.
- W2890746145 cites W1967573006 @default.
- W2890746145 cites W1969489455 @default.
- W2890746145 cites W1977166961 @default.
- W2890746145 cites W1980988541 @default.
- W2890746145 cites W1995115064 @default.
- W2890746145 cites W2002830978 @default.
- W2890746145 cites W2003694666 @default.
- W2890746145 cites W2008817604 @default.
- W2890746145 cites W2023826935 @default.
- W2890746145 cites W2028785873 @default.
- W2890746145 cites W2044188086 @default.
- W2890746145 cites W2050643653 @default.
- W2890746145 cites W2070891096 @default.
- W2890746145 cites W2077894872 @default.
- W2890746145 cites W2096812320 @default.
- W2890746145 cites W2099520003 @default.
- W2890746145 cites W2101544483 @default.
- W2890746145 cites W2109745890 @default.
- W2890746145 cites W2110374348 @default.
- W2890746145 cites W2115167433 @default.
- W2890746145 cites W2123608073 @default.
- W2890746145 cites W2125520394 @default.
- W2890746145 cites W2135394257 @default.
- W2890746145 cites W2138980013 @default.
- W2890746145 cites W2143152597 @default.
- W2890746145 cites W2143379684 @default.
- W2890746145 cites W2163685283 @default.
- W2890746145 cites W2165742022 @default.
- W2890746145 cites W2171059853 @default.
- W2890746145 cites W2238750598 @default.
- W2890746145 cites W2281275899 @default.
- W2890746145 cites W2479596228 @default.
- W2890746145 cites W2555735149 @default.
- W2890746145 cites W2582298661 @default.
- W2890746145 cites W2740135240 @default.
- W2890746145 cites W3121280562 @default.
- W2890746145 cites W3121465794 @default.
- W2890746145 cites W3121605682 @default.
- W2890746145 cites W3121790983 @default.
- W2890746145 cites W3123192782 @default.
- W2890746145 cites W3123477668 @default.
- W2890746145 cites W3124322429 @default.
- W2890746145 cites W3124458746 @default.
- W2890746145 cites W3124837614 @default.
- W2890746145 cites W3124979809 @default.
- W2890746145 cites W3125375020 @default.
- W2890746145 cites W3125454863 @default.
- W2890746145 cites W4213290338 @default.
- W2890746145 cites W4214932556 @default.
- W2890746145 cites W4231546411 @default.
- W2890746145 doi "https://doi.org/10.1007/s10614-018-9851-4" @default.
- W2890746145 hasPublicationYear "2018" @default.
- W2890746145 type Work @default.
- W2890746145 sameAs 2890746145 @default.
- W2890746145 citedByCount "3" @default.
- W2890746145 countsByYear W28907461452021 @default.
- W2890746145 countsByYear W28907461452022 @default.
- W2890746145 countsByYear W28907461452023 @default.
- W2890746145 crossrefType "journal-article" @default.
- W2890746145 hasAuthorship W2890746145A5050336875 @default.
- W2890746145 hasBestOaLocation W28907461451 @default.
- W2890746145 hasConcept C103278499 @default.
- W2890746145 hasConcept C106159729 @default.
- W2890746145 hasConcept C106306483 @default.
- W2890746145 hasConcept C115961682 @default.
- W2890746145 hasConcept C117245426 @default.
- W2890746145 hasConcept C119857082 @default.
- W2890746145 hasConcept C131562839 @default.
- W2890746145 hasConcept C13280743 @default.
- W2890746145 hasConcept C134306372 @default.
- W2890746145 hasConcept C149782125 @default.
- W2890746145 hasConcept C154945302 @default.
- W2890746145 hasConcept C158876240 @default.
- W2890746145 hasConcept C162324750 @default.
- W2890746145 hasConcept C172428447 @default.
- W2890746145 hasConcept C177148314 @default.
- W2890746145 hasConcept C185798385 @default.
- W2890746145 hasConcept C205649164 @default.
- W2890746145 hasConcept C21569690 @default.
- W2890746145 hasConcept C33923547 @default.
- W2890746145 hasConcept C41008148 @default.
- W2890746145 hasConcept C557471498 @default.
- W2890746145 hasConcept C78508483 @default.
- W2890746145 hasConceptScore W2890746145C103278499 @default.
- W2890746145 hasConceptScore W2890746145C106159729 @default.
- W2890746145 hasConceptScore W2890746145C106306483 @default.
- W2890746145 hasConceptScore W2890746145C115961682 @default.
- W2890746145 hasConceptScore W2890746145C117245426 @default.
- W2890746145 hasConceptScore W2890746145C119857082 @default.
- W2890746145 hasConceptScore W2890746145C131562839 @default.
- W2890746145 hasConceptScore W2890746145C13280743 @default.