Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890747888> ?p ?o ?g. }
- W2890747888 endingPage "106" @default.
- W2890747888 startingPage "99" @default.
- W2890747888 abstract "Dictionary learning (DL) is a popular approach of image classification. Most DL methods ignore the information hidden in training samples or atoms, and thus cannot enhance the discrimination performance of a dictionary learning algorithm effectively. In addition, the training samples are prone to a wide range of variances such as sample noise and illumination change, which results in the degraded classification performance. Hence, in this paper, we propose a weighted constraint based dictionary learning algorithm to improve the classification performance of dictionary learning. More specifically, the proposed algorithm uses a diagonal weighted matrix to construct a constraint item for reducing the auto-correlation between atoms. Meanwhile, the training samples of the same class enjoy similar coding coefficients such that the reconfiguration and discrimination performance of dictionary is enhanced. Furthermore, in order to avoid over-fitting, we convert a strict two valued label matrix into a flexible matrix in the classification procedure allowing more degrees of freedom to fit the class labels. Experimental results show that the proposed algorithm outperforms massive state-of-the-art dictionary learning and sparse representation algorithms in image classification." @default.
- W2890747888 created "2018-09-27" @default.
- W2890747888 creator A5000626328 @default.
- W2890747888 creator A5014128597 @default.
- W2890747888 creator A5030973483 @default.
- W2890747888 creator A5069647400 @default.
- W2890747888 creator A5071820359 @default.
- W2890747888 date "2020-02-01" @default.
- W2890747888 modified "2023-09-29" @default.
- W2890747888 title "Weighted constraint based dictionary learning for image classification" @default.
- W2890747888 cites W108615132 @default.
- W2890747888 cites W1514928307 @default.
- W2890747888 cites W1755851145 @default.
- W2890747888 cites W1847551302 @default.
- W2890747888 cites W1963932623 @default.
- W2890747888 cites W1966253962 @default.
- W2890747888 cites W1976977741 @default.
- W2890747888 cites W1993833594 @default.
- W2890747888 cites W2001657034 @default.
- W2890747888 cites W2003684104 @default.
- W2890747888 cites W2006793117 @default.
- W2890747888 cites W2011295372 @default.
- W2890747888 cites W2015908134 @default.
- W2890747888 cites W2016163491 @default.
- W2890747888 cites W2024060609 @default.
- W2890747888 cites W2025805530 @default.
- W2890747888 cites W2052546149 @default.
- W2890747888 cites W2072750214 @default.
- W2890747888 cites W2083493778 @default.
- W2890747888 cites W2085514593 @default.
- W2890747888 cites W2092904050 @default.
- W2890747888 cites W2097486709 @default.
- W2890747888 cites W2127271355 @default.
- W2890747888 cites W2131724888 @default.
- W2890747888 cites W2142540304 @default.
- W2890747888 cites W2152958130 @default.
- W2890747888 cites W2155522612 @default.
- W2890747888 cites W2160547390 @default.
- W2890747888 cites W2292964881 @default.
- W2890747888 cites W2294878026 @default.
- W2890747888 cites W2316226477 @default.
- W2890747888 cites W2321627895 @default.
- W2890747888 cites W2323738766 @default.
- W2890747888 cites W2327894203 @default.
- W2890747888 cites W2331050942 @default.
- W2890747888 cites W2343962831 @default.
- W2890747888 cites W2345812103 @default.
- W2890747888 cites W2345837149 @default.
- W2890747888 cites W2507855991 @default.
- W2890747888 cites W2509591188 @default.
- W2890747888 cites W2519420704 @default.
- W2890747888 cites W2522148122 @default.
- W2890747888 cites W2526655620 @default.
- W2890747888 cites W2534014507 @default.
- W2890747888 cites W2552672388 @default.
- W2890747888 cites W2568998735 @default.
- W2890747888 cites W2576473393 @default.
- W2890747888 cites W2577947138 @default.
- W2890747888 cites W2582553469 @default.
- W2890747888 cites W2591132901 @default.
- W2890747888 cites W2619145493 @default.
- W2890747888 cites W2625652088 @default.
- W2890747888 cites W2739103128 @default.
- W2890747888 cites W2745861267 @default.
- W2890747888 cites W2748614684 @default.
- W2890747888 cites W2753554633 @default.
- W2890747888 cites W2762490737 @default.
- W2890747888 cites W2763874937 @default.
- W2890747888 cites W2766616541 @default.
- W2890747888 cites W2774323292 @default.
- W2890747888 cites W2781821509 @default.
- W2890747888 cites W2786069602 @default.
- W2890747888 cites W2788142145 @default.
- W2890747888 cites W2803149990 @default.
- W2890747888 cites W2809048505 @default.
- W2890747888 cites W2963634791 @default.
- W2890747888 cites W4250955649 @default.
- W2890747888 doi "https://doi.org/10.1016/j.patrec.2018.09.008" @default.
- W2890747888 hasPublicationYear "2020" @default.
- W2890747888 type Work @default.
- W2890747888 sameAs 2890747888 @default.
- W2890747888 citedByCount "15" @default.
- W2890747888 countsByYear W28907478882019 @default.
- W2890747888 countsByYear W28907478882020 @default.
- W2890747888 countsByYear W28907478882021 @default.
- W2890747888 countsByYear W28907478882022 @default.
- W2890747888 countsByYear W28907478882023 @default.
- W2890747888 crossrefType "journal-article" @default.
- W2890747888 hasAuthorship W2890747888A5000626328 @default.
- W2890747888 hasAuthorship W2890747888A5014128597 @default.
- W2890747888 hasAuthorship W2890747888A5030973483 @default.
- W2890747888 hasAuthorship W2890747888A5069647400 @default.
- W2890747888 hasAuthorship W2890747888A5071820359 @default.
- W2890747888 hasConcept C11413529 @default.
- W2890747888 hasConcept C115961682 @default.
- W2890747888 hasConcept C119857082 @default.
- W2890747888 hasConcept C124066611 @default.
- W2890747888 hasConcept C130367717 @default.