Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890751459> ?p ?o ?g. }
- W2890751459 endingPage "901" @default.
- W2890751459 startingPage "895" @default.
- W2890751459 abstract "Artificial neural networks and artificial intelligence based regression techniques have been recently applied to various gasification processes. Although these techniques obtain relatively satisfactory results for predicting gasification products, most of the proposed models are prone to low number of samples in the training data sets, which also lead to overfitting problem. Furthermore, these models may fall into local minima since cross-validation has never been used for predicting gasification products. In this paper, we consider prediction of gasification products as a classification problem by using machine learning classifiers. Two types of classifiers have been proposed, i.e., binary least squares support vector machine and multi-class random forests classifiers, for predicting producer gas composition and its calorific value obtained by woody biomass gasification process in a downdraft gasifier. The proposed approaches have been developed and tested with 5237 data samples using 10-fold cross-validation, where binary and multi-class classifiers achieved over 96% and 89% prediction accuracy values, respectively." @default.
- W2890751459 created "2018-09-27" @default.
- W2890751459 creator A5021428901 @default.
- W2890751459 creator A5036236378 @default.
- W2890751459 date "2018-12-01" @default.
- W2890751459 modified "2023-10-10" @default.
- W2890751459 title "An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification" @default.
- W2890751459 cites W1913806764 @default.
- W2890751459 cites W1968186331 @default.
- W2890751459 cites W1976193075 @default.
- W2890751459 cites W1978158549 @default.
- W2890751459 cites W1986287200 @default.
- W2890751459 cites W1986340677 @default.
- W2890751459 cites W1990441178 @default.
- W2890751459 cites W1994697439 @default.
- W2890751459 cites W1996039992 @default.
- W2890751459 cites W1999847993 @default.
- W2890751459 cites W2024146414 @default.
- W2890751459 cites W2025248735 @default.
- W2890751459 cites W2046713252 @default.
- W2890751459 cites W2055817716 @default.
- W2890751459 cites W2071315630 @default.
- W2890751459 cites W2090748889 @default.
- W2890751459 cites W2101711129 @default.
- W2890751459 cites W2107956883 @default.
- W2890751459 cites W2128103042 @default.
- W2890751459 cites W2146194630 @default.
- W2890751459 cites W2186908855 @default.
- W2890751459 cites W2204304069 @default.
- W2890751459 cites W2216536395 @default.
- W2890751459 cites W2344470570 @default.
- W2890751459 cites W2431135127 @default.
- W2890751459 cites W2562312418 @default.
- W2890751459 cites W2586863128 @default.
- W2890751459 cites W2590235073 @default.
- W2890751459 cites W2607967335 @default.
- W2890751459 cites W2744649554 @default.
- W2890751459 cites W2765089750 @default.
- W2890751459 cites W2783214976 @default.
- W2890751459 cites W2792963126 @default.
- W2890751459 cites W2799378605 @default.
- W2890751459 cites W2799663581 @default.
- W2890751459 cites W2803370956 @default.
- W2890751459 cites W2911964244 @default.
- W2890751459 doi "https://doi.org/10.1016/j.energy.2018.09.131" @default.
- W2890751459 hasPublicationYear "2018" @default.
- W2890751459 type Work @default.
- W2890751459 sameAs 2890751459 @default.
- W2890751459 citedByCount "87" @default.
- W2890751459 countsByYear W28907514592019 @default.
- W2890751459 countsByYear W28907514592020 @default.
- W2890751459 countsByYear W28907514592021 @default.
- W2890751459 countsByYear W28907514592022 @default.
- W2890751459 countsByYear W28907514592023 @default.
- W2890751459 crossrefType "journal-article" @default.
- W2890751459 hasAuthorship W2890751459A5021428901 @default.
- W2890751459 hasAuthorship W2890751459A5036236378 @default.
- W2890751459 hasConcept C105923489 @default.
- W2890751459 hasConcept C119857082 @default.
- W2890751459 hasConcept C12267149 @default.
- W2890751459 hasConcept C127413603 @default.
- W2890751459 hasConcept C15229330 @default.
- W2890751459 hasConcept C154945302 @default.
- W2890751459 hasConcept C156383657 @default.
- W2890751459 hasConcept C178790620 @default.
- W2890751459 hasConcept C185592680 @default.
- W2890751459 hasConcept C194439259 @default.
- W2890751459 hasConcept C22019652 @default.
- W2890751459 hasConcept C27181475 @default.
- W2890751459 hasConcept C33923547 @default.
- W2890751459 hasConcept C41008148 @default.
- W2890751459 hasConcept C50644808 @default.
- W2890751459 hasConcept C512968161 @default.
- W2890751459 hasConcept C518851703 @default.
- W2890751459 hasConcept C548081761 @default.
- W2890751459 hasConcept C66905080 @default.
- W2890751459 hasConceptScore W2890751459C105923489 @default.
- W2890751459 hasConceptScore W2890751459C119857082 @default.
- W2890751459 hasConceptScore W2890751459C12267149 @default.
- W2890751459 hasConceptScore W2890751459C127413603 @default.
- W2890751459 hasConceptScore W2890751459C15229330 @default.
- W2890751459 hasConceptScore W2890751459C154945302 @default.
- W2890751459 hasConceptScore W2890751459C156383657 @default.
- W2890751459 hasConceptScore W2890751459C178790620 @default.
- W2890751459 hasConceptScore W2890751459C185592680 @default.
- W2890751459 hasConceptScore W2890751459C194439259 @default.
- W2890751459 hasConceptScore W2890751459C22019652 @default.
- W2890751459 hasConceptScore W2890751459C27181475 @default.
- W2890751459 hasConceptScore W2890751459C33923547 @default.
- W2890751459 hasConceptScore W2890751459C41008148 @default.
- W2890751459 hasConceptScore W2890751459C50644808 @default.
- W2890751459 hasConceptScore W2890751459C512968161 @default.
- W2890751459 hasConceptScore W2890751459C518851703 @default.
- W2890751459 hasConceptScore W2890751459C548081761 @default.
- W2890751459 hasConceptScore W2890751459C66905080 @default.
- W2890751459 hasLocation W28907514591 @default.
- W2890751459 hasOpenAccess W2890751459 @default.
- W2890751459 hasPrimaryLocation W28907514591 @default.