Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890752735> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2890752735 abstract "This thesis consists of two parts. In the first part, we define stochastic integrals w.r.t. the compensated Poisson random measures in a martingale type p, 1 ≤ p ≤ 2 Banach space and establish a certain continuity, in substitution of the Ita isometry property, for the stochastic integrals .. A version of Ita formula, as a generalization of the case studies in Ikecla and Watanabe [40], is derived. This Ito formula enables us to treat certain Levy processes without Gaussion components. Moreover, using ideas in [63] a version of stochastic Fubini theorem for stochastic integrals W.r. t. compensated Poisson random measures in martingale type spaces is established. In addition, if we assume that E is a martingale type p Banach space with the q-th, q ≥ p, power of the norm in C2-class, then we prove a maximal inequality for a cadlag modification u of the stochastic convolution w.r.t. the compensated Poisson random measures of a contraction Co-semigroups. The second part of this thesis is concerned with the existence and uniqueness of global mild solutions for stochastic beam equations w.r.t. the compensated Poisson random measures. In view of Khas'minskii's test for nonexplosions, the Lyapunov function technique is used via the Yosida approximation approach. Moreover, the asymptotic stability of the zero solution is proved and the Markov property of the solution is verified." @default.
- W2890752735 created "2018-09-27" @default.
- W2890752735 creator A5031655952 @default.
- W2890752735 date "2010-01-01" @default.
- W2890752735 modified "2023-09-28" @default.
- W2890752735 title "A study of SPDEs w.r.t. compensated Poisson random measures and related topics" @default.
- W2890752735 hasPublicationYear "2010" @default.
- W2890752735 type Work @default.
- W2890752735 sameAs 2890752735 @default.
- W2890752735 citedByCount "5" @default.
- W2890752735 countsByYear W28907527352012 @default.
- W2890752735 countsByYear W28907527352021 @default.
- W2890752735 crossrefType "dissertation" @default.
- W2890752735 hasAuthorship W2890752735A5031655952 @default.
- W2890752735 hasConcept C100906024 @default.
- W2890752735 hasConcept C105795698 @default.
- W2890752735 hasConcept C118615104 @default.
- W2890752735 hasConcept C132954091 @default.
- W2890752735 hasConcept C134306372 @default.
- W2890752735 hasConcept C202444582 @default.
- W2890752735 hasConcept C2777021972 @default.
- W2890752735 hasConcept C28826006 @default.
- W2890752735 hasConcept C33923547 @default.
- W2890752735 hasConcept C39943821 @default.
- W2890752735 hasConcept C48406656 @default.
- W2890752735 hasConceptScore W2890752735C100906024 @default.
- W2890752735 hasConceptScore W2890752735C105795698 @default.
- W2890752735 hasConceptScore W2890752735C118615104 @default.
- W2890752735 hasConceptScore W2890752735C132954091 @default.
- W2890752735 hasConceptScore W2890752735C134306372 @default.
- W2890752735 hasConceptScore W2890752735C202444582 @default.
- W2890752735 hasConceptScore W2890752735C2777021972 @default.
- W2890752735 hasConceptScore W2890752735C28826006 @default.
- W2890752735 hasConceptScore W2890752735C33923547 @default.
- W2890752735 hasConceptScore W2890752735C39943821 @default.
- W2890752735 hasConceptScore W2890752735C48406656 @default.
- W2890752735 hasLocation W28907527351 @default.
- W2890752735 hasOpenAccess W2890752735 @default.
- W2890752735 hasPrimaryLocation W28907527351 @default.
- W2890752735 hasRelatedWork W1044456979 @default.
- W2890752735 hasRelatedWork W108455648 @default.
- W2890752735 hasRelatedWork W1562564909 @default.
- W2890752735 hasRelatedWork W2005699498 @default.
- W2890752735 hasRelatedWork W2012547370 @default.
- W2890752735 hasRelatedWork W2012965380 @default.
- W2890752735 hasRelatedWork W2042055439 @default.
- W2890752735 hasRelatedWork W2060863476 @default.
- W2890752735 hasRelatedWork W2072139201 @default.
- W2890752735 hasRelatedWork W2083668888 @default.
- W2890752735 hasRelatedWork W2147509120 @default.
- W2890752735 hasRelatedWork W2418492189 @default.
- W2890752735 hasRelatedWork W2433234919 @default.
- W2890752735 hasRelatedWork W2513841684 @default.
- W2890752735 hasRelatedWork W2782244069 @default.
- W2890752735 hasRelatedWork W2962730321 @default.
- W2890752735 hasRelatedWork W3098595850 @default.
- W2890752735 hasRelatedWork W640453503 @default.
- W2890752735 hasRelatedWork W83055122 @default.
- W2890752735 hasRelatedWork W1930991240 @default.
- W2890752735 isParatext "false" @default.
- W2890752735 isRetracted "false" @default.
- W2890752735 magId "2890752735" @default.
- W2890752735 workType "dissertation" @default.