Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890761376> ?p ?o ?g. }
- W2890761376 endingPage "41" @default.
- W2890761376 startingPage "32" @default.
- W2890761376 abstract "Abstract Soil organic carbon (SOC) plays an important role in controlling the function and quality of soil and offsetting the emissions of greenhouse gases. However, the dynamic monitoring and estimation of SOC are very difficult due to the complex traditional methods and the changing environmental variables. For instance, the calculation of SOC stock requires measurement of a few relevant soil attributes, such as soil organic matter (SOM), soil bulk density (SBD), soil moisture, and soil weight, in the laboratory. Many studies have suggested that visible and near-infrared (vis–NIR) spectra are a practical and affordable alternative to accurately and rapidly estimate the soil attributes relevant to SOC stock, and airborne hyperspectral images can be used as a valuable data source to perform digital soil mapping with high spatial resolution. The objective of this research was to check the predicted capability of SOC stock through laboratory and airborne vis–NIR spectral data. A total of 50 topsoil samples (0–15 cm) from the farmland of Iowa City were used as the study object. The partial least squares regression model was used to predict SOC stock through the direct and indirect methods. In the direct method, the SOC stock was predicted using the spectral data. In the indirect method, the relevant soil properties (SOM and SBD) of the SOC stock were predicted using the spectral data, and then the SOC stock was calculated. The mechanism of the prediction methods and the potential influencing factors of the model performance were discussed from the aspect of electromagnetic theory and empirical statistics. Results showed the following: (i) SOC stock can be successfully predicted using the laboratory spectra and the airborne hyperspectral image through the direct and indirect methods; (ii) the SOC stock and its relevant soil properties (SOM and SBD) showed evident spectral absorption characteristics in the vis–NIR spectral band; (iii) the atmospheric environment and soil surface conditions were the main influencing factors of the prediction accuracy between the airborne and laboratory spectra. This research might be useful for the dynamic monitoring and modeling of SOC in agricultural and environmental fields." @default.
- W2890761376 created "2018-09-27" @default.
- W2890761376 creator A5000785769 @default.
- W2890761376 creator A5006850117 @default.
- W2890761376 creator A5015162829 @default.
- W2890761376 creator A5022548657 @default.
- W2890761376 creator A5027847470 @default.
- W2890761376 creator A5069162962 @default.
- W2890761376 date "2019-03-01" @default.
- W2890761376 modified "2023-10-03" @default.
- W2890761376 title "Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images" @default.
- W2890761376 cites W1505543708 @default.
- W2890761376 cites W1855222657 @default.
- W2890761376 cites W1877350092 @default.
- W2890761376 cites W1934353085 @default.
- W2890761376 cites W1973273412 @default.
- W2890761376 cites W1984100396 @default.
- W2890761376 cites W1994221921 @default.
- W2890761376 cites W1998481896 @default.
- W2890761376 cites W1998843090 @default.
- W2890761376 cites W2007610539 @default.
- W2890761376 cites W2017441779 @default.
- W2890761376 cites W2029745943 @default.
- W2890761376 cites W2041633329 @default.
- W2890761376 cites W2051529402 @default.
- W2890761376 cites W2052903566 @default.
- W2890761376 cites W2053610595 @default.
- W2890761376 cites W2058311689 @default.
- W2890761376 cites W2070420656 @default.
- W2890761376 cites W2077033502 @default.
- W2890761376 cites W2080545724 @default.
- W2890761376 cites W2089953116 @default.
- W2890761376 cites W2090683582 @default.
- W2890761376 cites W2091444647 @default.
- W2890761376 cites W2103766443 @default.
- W2890761376 cites W2104275888 @default.
- W2890761376 cites W2142405095 @default.
- W2890761376 cites W2156333351 @default.
- W2890761376 cites W2158863190 @default.
- W2890761376 cites W2180277566 @default.
- W2890761376 cites W2313339984 @default.
- W2890761376 cites W2322799392 @default.
- W2890761376 cites W2325039341 @default.
- W2890761376 cites W2400795375 @default.
- W2890761376 cites W2499889863 @default.
- W2890761376 cites W2537107831 @default.
- W2890761376 cites W2547616890 @default.
- W2890761376 cites W2553232847 @default.
- W2890761376 cites W2555930296 @default.
- W2890761376 cites W2594206203 @default.
- W2890761376 cites W2767899554 @default.
- W2890761376 cites W581156175 @default.
- W2890761376 cites W873619941 @default.
- W2890761376 doi "https://doi.org/10.1016/j.geoderma.2018.09.003" @default.
- W2890761376 hasPublicationYear "2019" @default.
- W2890761376 type Work @default.
- W2890761376 sameAs 2890761376 @default.
- W2890761376 citedByCount "62" @default.
- W2890761376 countsByYear W28907613762019 @default.
- W2890761376 countsByYear W28907613762020 @default.
- W2890761376 countsByYear W28907613762021 @default.
- W2890761376 countsByYear W28907613762022 @default.
- W2890761376 countsByYear W28907613762023 @default.
- W2890761376 crossrefType "journal-article" @default.
- W2890761376 hasAuthorship W2890761376A5000785769 @default.
- W2890761376 hasAuthorship W2890761376A5006850117 @default.
- W2890761376 hasAuthorship W2890761376A5015162829 @default.
- W2890761376 hasAuthorship W2890761376A5022548657 @default.
- W2890761376 hasAuthorship W2890761376A5027847470 @default.
- W2890761376 hasAuthorship W2890761376A5069162962 @default.
- W2890761376 hasConcept C107872376 @default.
- W2890761376 hasConcept C111368507 @default.
- W2890761376 hasConcept C127313418 @default.
- W2890761376 hasConcept C132651083 @default.
- W2890761376 hasConcept C159078339 @default.
- W2890761376 hasConcept C159390177 @default.
- W2890761376 hasConcept C159750122 @default.
- W2890761376 hasConcept C185592680 @default.
- W2890761376 hasConcept C1965285 @default.
- W2890761376 hasConcept C2994081031 @default.
- W2890761376 hasConcept C39432304 @default.
- W2890761376 hasConcept C39464130 @default.
- W2890761376 hasConcept C62649853 @default.
- W2890761376 hasConceptScore W2890761376C107872376 @default.
- W2890761376 hasConceptScore W2890761376C111368507 @default.
- W2890761376 hasConceptScore W2890761376C127313418 @default.
- W2890761376 hasConceptScore W2890761376C132651083 @default.
- W2890761376 hasConceptScore W2890761376C159078339 @default.
- W2890761376 hasConceptScore W2890761376C159390177 @default.
- W2890761376 hasConceptScore W2890761376C159750122 @default.
- W2890761376 hasConceptScore W2890761376C185592680 @default.
- W2890761376 hasConceptScore W2890761376C1965285 @default.
- W2890761376 hasConceptScore W2890761376C2994081031 @default.
- W2890761376 hasConceptScore W2890761376C39432304 @default.
- W2890761376 hasConceptScore W2890761376C39464130 @default.
- W2890761376 hasConceptScore W2890761376C62649853 @default.
- W2890761376 hasFunder F4320321001 @default.
- W2890761376 hasFunder F4320321133 @default.