Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890769048> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2890769048 abstract "Here we investigate possible quantum analog of Kolmogorov-Arnold-Moser (KAM) theorem in two types of hybrid SYK models which contain both $ q=4 $ SYK with interaction $ J $ and $ q=2 $ SYK with an interaction $ K $ in Type I or $ (q=2)^2 $ SYK with an interaction $ sqrt{K} $ in Type II . These models include hybrid Majorana fermion, complex fermion and bosonic SYK. We first introduce a new universal ratio which is the ratio of the next nearest neighbour (NNN) energy level spacing to characterize the random matrix behaviours. We make exact symmetry analysis on the possible symmetry class of both types of hybrid SYK in the 10 fold way and also work out the degeneracy of each energy levels. We perform exact diagonalization to evaluate both the known NN ratio and the new NNN ratio. In Type I, as $ K/J $ changes, there is always a chaotic to non-chaotic transition (CNCT) from the GUE to Poisson in all the hybrid fermionic SYK models, but not the hybrid bosonic SYK model. In Type II, there are always CNCT from the corresponding GOE, GUE or GSE dictated by the symmetry of the $ q=4 $ SYK to the Poisson dictated by $ ( q=2 )^2 $ SYK. When the double degeneracy at the $ q=4 $ ( or $ (q=2)^2 $ ) side is broken by the $ q=2 $ ( or $ q=4 $ ) perturbation in Type I ( or Type II), the new NNN ratio can be most effectively to quantify the stability of quantum chaos ( or the KAM ). We compare the stability of quantum chaos and KAM theorem near the integrability in all these hybrid SYK models. We also discuss some possible connections between CNCT characterized by the random matrix theory and the quantum phase transitions (QPT) characterized by renormalization groups. Quantum chaos in both types of hybrid SYK models are also contrasted with that in the $ U(1)/Z_2 $ Dicke model in quantum optics." @default.
- W2890769048 created "2018-09-27" @default.
- W2890769048 creator A5037651410 @default.
- W2890769048 creator A5044414304 @default.
- W2890769048 creator A5048916857 @default.
- W2890769048 creator A5060836430 @default.
- W2890769048 date "2018-09-20" @default.
- W2890769048 modified "2023-09-26" @default.
- W2890769048 title "Random matrices and quantum analog of Kolmogorov-Arnold-Moser theorem in hybrid Sachdev-Ye-Kitaev models" @default.
- W2890769048 cites W1910108094 @default.
- W2890769048 cites W2252917783 @default.
- W2890769048 cites W2298982866 @default.
- W2890769048 cites W2344612405 @default.
- W2890769048 cites W2415090955 @default.
- W2890769048 cites W2468247974 @default.
- W2890769048 cites W2558074767 @default.
- W2890769048 cites W2563669235 @default.
- W2890769048 cites W2587315384 @default.
- W2890769048 cites W2626129671 @default.
- W2890769048 cites W2735740957 @default.
- W2890769048 cites W2796037519 @default.
- W2890769048 cites W2802799773 @default.
- W2890769048 cites W2895656445 @default.
- W2890769048 cites W2965686789 @default.
- W2890769048 cites W3100691072 @default.
- W2890769048 hasPublicationYear "2018" @default.
- W2890769048 type Work @default.
- W2890769048 sameAs 2890769048 @default.
- W2890769048 citedByCount "0" @default.
- W2890769048 crossrefType "posted-content" @default.
- W2890769048 hasAuthorship W2890769048A5037651410 @default.
- W2890769048 hasAuthorship W2890769048A5044414304 @default.
- W2890769048 hasAuthorship W2890769048A5048916857 @default.
- W2890769048 hasAuthorship W2890769048A5060836430 @default.
- W2890769048 hasConcept C121332964 @default.
- W2890769048 hasConcept C136269434 @default.
- W2890769048 hasConcept C15184713 @default.
- W2890769048 hasConcept C158693339 @default.
- W2890769048 hasConcept C185592680 @default.
- W2890769048 hasConcept C18903297 @default.
- W2890769048 hasConcept C2777299769 @default.
- W2890769048 hasConcept C2778761060 @default.
- W2890769048 hasConcept C2779101571 @default.
- W2890769048 hasConcept C35174551 @default.
- W2890769048 hasConcept C37914503 @default.
- W2890769048 hasConcept C42362537 @default.
- W2890769048 hasConcept C52233224 @default.
- W2890769048 hasConcept C55493867 @default.
- W2890769048 hasConcept C62478195 @default.
- W2890769048 hasConcept C62520636 @default.
- W2890769048 hasConcept C64812099 @default.
- W2890769048 hasConcept C84114770 @default.
- W2890769048 hasConcept C86803240 @default.
- W2890769048 hasConceptScore W2890769048C121332964 @default.
- W2890769048 hasConceptScore W2890769048C136269434 @default.
- W2890769048 hasConceptScore W2890769048C15184713 @default.
- W2890769048 hasConceptScore W2890769048C158693339 @default.
- W2890769048 hasConceptScore W2890769048C185592680 @default.
- W2890769048 hasConceptScore W2890769048C18903297 @default.
- W2890769048 hasConceptScore W2890769048C2777299769 @default.
- W2890769048 hasConceptScore W2890769048C2778761060 @default.
- W2890769048 hasConceptScore W2890769048C2779101571 @default.
- W2890769048 hasConceptScore W2890769048C35174551 @default.
- W2890769048 hasConceptScore W2890769048C37914503 @default.
- W2890769048 hasConceptScore W2890769048C42362537 @default.
- W2890769048 hasConceptScore W2890769048C52233224 @default.
- W2890769048 hasConceptScore W2890769048C55493867 @default.
- W2890769048 hasConceptScore W2890769048C62478195 @default.
- W2890769048 hasConceptScore W2890769048C62520636 @default.
- W2890769048 hasConceptScore W2890769048C64812099 @default.
- W2890769048 hasConceptScore W2890769048C84114770 @default.
- W2890769048 hasConceptScore W2890769048C86803240 @default.
- W2890769048 hasLocation W28907690481 @default.
- W2890769048 hasOpenAccess W2890769048 @default.
- W2890769048 hasPrimaryLocation W28907690481 @default.
- W2890769048 hasRelatedWork W1515614391 @default.
- W2890769048 hasRelatedWork W1964650274 @default.
- W2890769048 hasRelatedWork W201722341 @default.
- W2890769048 hasRelatedWork W2039450476 @default.
- W2890769048 hasRelatedWork W2050607196 @default.
- W2890769048 hasRelatedWork W2055327038 @default.
- W2890769048 hasRelatedWork W2117427186 @default.
- W2890769048 hasRelatedWork W2170505560 @default.
- W2890769048 hasRelatedWork W2252917783 @default.
- W2890769048 hasRelatedWork W2593688295 @default.
- W2890769048 hasRelatedWork W2600048765 @default.
- W2890769048 hasRelatedWork W2905706739 @default.
- W2890769048 hasRelatedWork W2945876120 @default.
- W2890769048 hasRelatedWork W2949378862 @default.
- W2890769048 hasRelatedWork W3016253163 @default.
- W2890769048 hasRelatedWork W3084378274 @default.
- W2890769048 hasRelatedWork W3091422559 @default.
- W2890769048 hasRelatedWork W3105634591 @default.
- W2890769048 hasRelatedWork W3106131874 @default.
- W2890769048 hasRelatedWork W3106216274 @default.
- W2890769048 isParatext "false" @default.
- W2890769048 isRetracted "false" @default.
- W2890769048 magId "2890769048" @default.
- W2890769048 workType "article" @default.