Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890771407> ?p ?o ?g. }
- W2890771407 abstract "Image Denoising is among the most fundamental problems in image processing, not only for the sake of improving the image quality, but also as the first proof-of-concept for the development of virtually any new regularization term for inverse problems in imaging. While variational methods have represented the state of the art for several decades, they are recently being challenged by (deep) learning-based approaches. In this chapter, we review some of the most successful variational approaches for image reconstruction and discuss their structural advantages and disadvantages in comparison to learning-based approaches. Furthermore, we present a framework to incorporate deep learning approaches in inverse problem formulations, so as to leverage the descriptive power of deep learning with the flexibility of inverse problems’ solvers. Different algorithmic schemes are derived from replacing the regularizing subproblem of common optimization algorithms by neural networks trained on image denoising. We conclude from several experiments that such techniques are very promising but further studies are needed to understand to what extent and in which settings the power of the data-driven network transfers to a better overall performance." @default.
- W2890771407 created "2018-09-27" @default.
- W2890771407 creator A5016208719 @default.
- W2890771407 creator A5087710605 @default.
- W2890771407 date "2018-01-01" @default.
- W2890771407 modified "2023-09-27" @default.
- W2890771407 title "Image Denoising—Old and New" @default.
- W2890771407 cites W125636445 @default.
- W2890771407 cites W1489458628 @default.
- W2890771407 cites W1506777192 @default.
- W2890771407 cites W1677182931 @default.
- W2890771407 cites W1915360731 @default.
- W2890771407 cites W1960698473 @default.
- W2890771407 cites W1964100169 @default.
- W2890771407 cites W1971524069 @default.
- W2890771407 cites W1975381246 @default.
- W2890771407 cites W1982452826 @default.
- W2890771407 cites W2000594266 @default.
- W2890771407 cites W2011181254 @default.
- W2890771407 cites W2020999234 @default.
- W2890771407 cites W2021347102 @default.
- W2890771407 cites W2031993275 @default.
- W2890771407 cites W2037642501 @default.
- W2890771407 cites W2039939700 @default.
- W2890771407 cites W2048695508 @default.
- W2890771407 cites W2049893860 @default.
- W2890771407 cites W2053779250 @default.
- W2890771407 cites W2060945009 @default.
- W2890771407 cites W2064578710 @default.
- W2890771407 cites W2087416986 @default.
- W2890771407 cites W2090533176 @default.
- W2890771407 cites W2092663520 @default.
- W2890771407 cites W2097073572 @default.
- W2890771407 cites W2103559027 @default.
- W2890771407 cites W2105119246 @default.
- W2890771407 cites W2110264793 @default.
- W2890771407 cites W2114122776 @default.
- W2890771407 cites W2114487471 @default.
- W2890771407 cites W2122752532 @default.
- W2890771407 cites W2129381747 @default.
- W2890771407 cites W2130975789 @default.
- W2890771407 cites W2131686571 @default.
- W2890771407 cites W2139643804 @default.
- W2890771407 cites W2155343350 @default.
- W2890771407 cites W2160547390 @default.
- W2890771407 cites W2171218400 @default.
- W2890771407 cites W2172275395 @default.
- W2890771407 cites W2194775991 @default.
- W2890771407 cites W2203322007 @default.
- W2890771407 cites W2327669213 @default.
- W2890771407 cites W2331128040 @default.
- W2890771407 cites W2508457857 @default.
- W2890771407 cites W2536599074 @default.
- W2890771407 cites W25485050 @default.
- W2890771407 cites W2557449848 @default.
- W2890771407 cites W2564504491 @default.
- W2890771407 cites W2573726823 @default.
- W2890771407 cites W2604885021 @default.
- W2890771407 cites W2613155248 @default.
- W2890771407 cites W2751736113 @default.
- W2890771407 cites W2962767526 @default.
- W2890771407 cites W2963398988 @default.
- W2890771407 cites W2963814976 @default.
- W2890771407 cites W2964046397 @default.
- W2890771407 cites W3102025760 @default.
- W2890771407 cites W3104105574 @default.
- W2890771407 cites W3123837026 @default.
- W2890771407 cites W4244769743 @default.
- W2890771407 doi "https://doi.org/10.1007/978-3-319-96029-6_3" @default.
- W2890771407 hasPublicationYear "2018" @default.
- W2890771407 type Work @default.
- W2890771407 sameAs 2890771407 @default.
- W2890771407 citedByCount "1" @default.
- W2890771407 countsByYear W28907714072019 @default.
- W2890771407 crossrefType "book-chapter" @default.
- W2890771407 hasAuthorship W2890771407A5016208719 @default.
- W2890771407 hasAuthorship W2890771407A5087710605 @default.
- W2890771407 hasConcept C105795698 @default.
- W2890771407 hasConcept C106430172 @default.
- W2890771407 hasConcept C108583219 @default.
- W2890771407 hasConcept C11413529 @default.
- W2890771407 hasConcept C115961682 @default.
- W2890771407 hasConcept C119857082 @default.
- W2890771407 hasConcept C126255220 @default.
- W2890771407 hasConcept C134306372 @default.
- W2890771407 hasConcept C135252773 @default.
- W2890771407 hasConcept C153083717 @default.
- W2890771407 hasConcept C154945302 @default.
- W2890771407 hasConcept C163294075 @default.
- W2890771407 hasConcept C2776135515 @default.
- W2890771407 hasConcept C2780598303 @default.
- W2890771407 hasConcept C2983327147 @default.
- W2890771407 hasConcept C33923547 @default.
- W2890771407 hasConcept C41008148 @default.
- W2890771407 hasConcept C9417928 @default.
- W2890771407 hasConceptScore W2890771407C105795698 @default.
- W2890771407 hasConceptScore W2890771407C106430172 @default.
- W2890771407 hasConceptScore W2890771407C108583219 @default.
- W2890771407 hasConceptScore W2890771407C11413529 @default.
- W2890771407 hasConceptScore W2890771407C115961682 @default.