Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890775339> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2890775339 endingPage "90" @default.
- W2890775339 startingPage "82" @default.
- W2890775339 abstract "Due to inevitable differences between the data used for training modern CAD systems and the data encountered when they are deployed in clinical scenarios, the ability to automatically assess the quality of predictions when no expert annotation is available can be critical. In this paper, we propose a new method for quality assessment of retinal vessel tree segmentations in the absence of a reference ground-truth. For this, we artificially degrade expert-annotated vessel map segmentations and then train a CNN to predict the similarity between the degraded images and their corresponding ground-truths. This similarity can be interpreted as a proxy to the quality of a segmentation. The proposed model can produce a visually meaningful quality score, effectively predicting the quality of a vessel tree segmentation in the absence of a manually segmented reference. We further demonstrate the usefulness of our approach by applying it to automatically find a threshold for soft probabilistic segmentations on a per-image basis. For an independent state-of-the-art unsupervised vessel segmentation technique, the thresholds selected by our approach lead to statistically significant improvements in F1-score ((+2.67%)) and Matthews Correlation Coefficient (+(3.11%)) over the thresholds derived from ROC analysis on the training set. The score is also shown to correlate strongly with F1 and MCC when a reference is available." @default.
- W2890775339 created "2018-09-27" @default.
- W2890775339 creator A5018407518 @default.
- W2890775339 creator A5020399763 @default.
- W2890775339 creator A5043790595 @default.
- W2890775339 creator A5061171324 @default.
- W2890775339 creator A5079021497 @default.
- W2890775339 creator A5081534736 @default.
- W2890775339 date "2018-01-01" @default.
- W2890775339 modified "2023-10-01" @default.
- W2890775339 title "A No-Reference Quality Metric for Retinal Vessel Tree Segmentation" @default.
- W2890775339 cites W1901129140 @default.
- W2890775339 cites W1969496006 @default.
- W2890775339 cites W2053771279 @default.
- W2890775339 cites W2053782453 @default.
- W2890775339 cites W2078483536 @default.
- W2890775339 cites W2109037308 @default.
- W2890775339 cites W2150769593 @default.
- W2890775339 cites W2156875677 @default.
- W2890775339 cites W2156882793 @default.
- W2890775339 cites W2162020807 @default.
- W2890775339 cites W2488605601 @default.
- W2890775339 cites W2594608309 @default.
- W2890775339 cites W4252684946 @default.
- W2890775339 doi "https://doi.org/10.1007/978-3-030-00928-1_10" @default.
- W2890775339 hasPublicationYear "2018" @default.
- W2890775339 type Work @default.
- W2890775339 sameAs 2890775339 @default.
- W2890775339 citedByCount "9" @default.
- W2890775339 countsByYear W28907753392019 @default.
- W2890775339 countsByYear W28907753392020 @default.
- W2890775339 countsByYear W28907753392021 @default.
- W2890775339 countsByYear W28907753392022 @default.
- W2890775339 crossrefType "book-chapter" @default.
- W2890775339 hasAuthorship W2890775339A5018407518 @default.
- W2890775339 hasAuthorship W2890775339A5020399763 @default.
- W2890775339 hasAuthorship W2890775339A5043790595 @default.
- W2890775339 hasAuthorship W2890775339A5061171324 @default.
- W2890775339 hasAuthorship W2890775339A5079021497 @default.
- W2890775339 hasAuthorship W2890775339A5081534736 @default.
- W2890775339 hasConcept C113174947 @default.
- W2890775339 hasConcept C114614502 @default.
- W2890775339 hasConcept C154945302 @default.
- W2890775339 hasConcept C162324750 @default.
- W2890775339 hasConcept C176217482 @default.
- W2890775339 hasConcept C21547014 @default.
- W2890775339 hasConcept C31972630 @default.
- W2890775339 hasConcept C33923547 @default.
- W2890775339 hasConcept C41008148 @default.
- W2890775339 hasConcept C89600930 @default.
- W2890775339 hasConceptScore W2890775339C113174947 @default.
- W2890775339 hasConceptScore W2890775339C114614502 @default.
- W2890775339 hasConceptScore W2890775339C154945302 @default.
- W2890775339 hasConceptScore W2890775339C162324750 @default.
- W2890775339 hasConceptScore W2890775339C176217482 @default.
- W2890775339 hasConceptScore W2890775339C21547014 @default.
- W2890775339 hasConceptScore W2890775339C31972630 @default.
- W2890775339 hasConceptScore W2890775339C33923547 @default.
- W2890775339 hasConceptScore W2890775339C41008148 @default.
- W2890775339 hasConceptScore W2890775339C89600930 @default.
- W2890775339 hasLocation W28907753391 @default.
- W2890775339 hasOpenAccess W2890775339 @default.
- W2890775339 hasPrimaryLocation W28907753391 @default.
- W2890775339 hasRelatedWork W1669643531 @default.
- W2890775339 hasRelatedWork W2005437358 @default.
- W2890775339 hasRelatedWork W2008656436 @default.
- W2890775339 hasRelatedWork W2023558673 @default.
- W2890775339 hasRelatedWork W2039154422 @default.
- W2890775339 hasRelatedWork W2122581818 @default.
- W2890775339 hasRelatedWork W2134924024 @default.
- W2890775339 hasRelatedWork W2517104666 @default.
- W2890775339 hasRelatedWork W2895616727 @default.
- W2890775339 hasRelatedWork W2182382398 @default.
- W2890775339 isParatext "false" @default.
- W2890775339 isRetracted "false" @default.
- W2890775339 magId "2890775339" @default.
- W2890775339 workType "book-chapter" @default.