Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890781454> ?p ?o ?g. }
- W2890781454 abstract "This paper investigates the benefits of integrating multibaseline polarimetric interferometric SAR (PolInSAR) data with LiDAR measurements using a machine-learning approach in order to obtain improved forest canopy height estimates. Multiple interferometric baselines are required to ensure consistent height retrieval performance across a broad range of tree heights. Previous studies have proposed multibaseline merging strategies using metrics extracted from PolInSAR measurements. Here, we introduce the multibaseline merging using a support vector machine trained by sparse LiDAR samples. The novelty of this method lies in the new way of combining the two datasets. Its advantage is that it does not require a complete LiDAR coverage, but only sparse LiDAR samples distributed over the PolInSAR image. LiDAR samples are not used to obtain the best height among a set of height stacks, but rather to train the retrieval algorithm in selecting the best height using the variables derived through PolInSAR processing. This enables more accurate height estimation for a wider scene covered by the SAR with only partial LiDAR coverage. We test our approach on NASA AfriSAR data acquired over tropical forests by the L-band UAVSAR and the LVIS LiDAR instruments. The estimated height from this approach has a higher accuracy (r2 = 0.81, RMSE = 7.1 m) than previously introduced multibaseline merging approach (r2 = 0.67, RMSE = 9.2 m). This method is beneficial to future spaceborne missions, such as GEDI and BIOMASS, which will provide a wealth of near-contemporaneous LiDAR samples and PolInSAR measurements for mapping forest structure at global scale." @default.
- W2890781454 created "2018-09-27" @default.
- W2890781454 creator A5018226678 @default.
- W2890781454 creator A5044680131 @default.
- W2890781454 creator A5052301837 @default.
- W2890781454 creator A5069711114 @default.
- W2890781454 date "2020-01-01" @default.
- W2890781454 modified "2023-10-16" @default.
- W2890781454 title "Corrections to “A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data” [Oct 19 3453-3463]" @default.
- W2890781454 cites W1179254689 @default.
- W2890781454 cites W1250998135 @default.
- W2890781454 cites W1538058927 @default.
- W2890781454 cites W1869391892 @default.
- W2890781454 cites W1967177682 @default.
- W2890781454 cites W1976723446 @default.
- W2890781454 cites W1992541517 @default.
- W2890781454 cites W1997427322 @default.
- W2890781454 cites W199755745 @default.
- W2890781454 cites W2001470990 @default.
- W2890781454 cites W2008542193 @default.
- W2890781454 cites W2015139108 @default.
- W2890781454 cites W2020520344 @default.
- W2890781454 cites W2023854732 @default.
- W2890781454 cites W2024566288 @default.
- W2890781454 cites W2044769733 @default.
- W2890781454 cites W2044987471 @default.
- W2890781454 cites W2049280900 @default.
- W2890781454 cites W2065407071 @default.
- W2890781454 cites W2094365596 @default.
- W2890781454 cites W2101748122 @default.
- W2890781454 cites W2108426499 @default.
- W2890781454 cites W2119821739 @default.
- W2890781454 cites W2126464026 @default.
- W2890781454 cites W2136314381 @default.
- W2890781454 cites W2136371222 @default.
- W2890781454 cites W2143716001 @default.
- W2890781454 cites W2146552104 @default.
- W2890781454 cites W2155618100 @default.
- W2890781454 cites W2156374693 @default.
- W2890781454 cites W2269369078 @default.
- W2890781454 cites W2537504540 @default.
- W2890781454 cites W2540252597 @default.
- W2890781454 cites W2580337091 @default.
- W2890781454 cites W2607590775 @default.
- W2890781454 cites W2993502306 @default.
- W2890781454 cites W76422563 @default.
- W2890781454 cites W3022948190 @default.
- W2890781454 doi "https://doi.org/10.1109/jstars.2020.2968779" @default.
- W2890781454 hasPublicationYear "2020" @default.
- W2890781454 type Work @default.
- W2890781454 sameAs 2890781454 @default.
- W2890781454 citedByCount "0" @default.
- W2890781454 crossrefType "journal-article" @default.
- W2890781454 hasAuthorship W2890781454A5018226678 @default.
- W2890781454 hasAuthorship W2890781454A5044680131 @default.
- W2890781454 hasAuthorship W2890781454A5052301837 @default.
- W2890781454 hasAuthorship W2890781454A5069711114 @default.
- W2890781454 hasBestOaLocation W28907814541 @default.
- W2890781454 hasConcept C105795698 @default.
- W2890781454 hasConcept C115051666 @default.
- W2890781454 hasConcept C120665830 @default.
- W2890781454 hasConcept C121332964 @default.
- W2890781454 hasConcept C127313418 @default.
- W2890781454 hasConcept C1276947 @default.
- W2890781454 hasConcept C139945424 @default.
- W2890781454 hasConcept C166689943 @default.
- W2890781454 hasConcept C191486275 @default.
- W2890781454 hasConcept C205649164 @default.
- W2890781454 hasConcept C22286887 @default.
- W2890781454 hasConcept C2778755073 @default.
- W2890781454 hasConcept C28493345 @default.
- W2890781454 hasConcept C30354325 @default.
- W2890781454 hasConcept C33923547 @default.
- W2890781454 hasConcept C39432304 @default.
- W2890781454 hasConcept C41008148 @default.
- W2890781454 hasConcept C51399673 @default.
- W2890781454 hasConcept C555944384 @default.
- W2890781454 hasConcept C58640448 @default.
- W2890781454 hasConcept C62649853 @default.
- W2890781454 hasConcept C76155785 @default.
- W2890781454 hasConcept C87360688 @default.
- W2890781454 hasConceptScore W2890781454C105795698 @default.
- W2890781454 hasConceptScore W2890781454C115051666 @default.
- W2890781454 hasConceptScore W2890781454C120665830 @default.
- W2890781454 hasConceptScore W2890781454C121332964 @default.
- W2890781454 hasConceptScore W2890781454C127313418 @default.
- W2890781454 hasConceptScore W2890781454C1276947 @default.
- W2890781454 hasConceptScore W2890781454C139945424 @default.
- W2890781454 hasConceptScore W2890781454C166689943 @default.
- W2890781454 hasConceptScore W2890781454C191486275 @default.
- W2890781454 hasConceptScore W2890781454C205649164 @default.
- W2890781454 hasConceptScore W2890781454C22286887 @default.
- W2890781454 hasConceptScore W2890781454C2778755073 @default.
- W2890781454 hasConceptScore W2890781454C28493345 @default.
- W2890781454 hasConceptScore W2890781454C30354325 @default.
- W2890781454 hasConceptScore W2890781454C33923547 @default.
- W2890781454 hasConceptScore W2890781454C39432304 @default.
- W2890781454 hasConceptScore W2890781454C41008148 @default.
- W2890781454 hasConceptScore W2890781454C51399673 @default.
- W2890781454 hasConceptScore W2890781454C555944384 @default.