Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890784992> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2890784992 endingPage "120" @default.
- W2890784992 startingPage "101" @default.
- W2890784992 abstract "This article explores the possibilities of automatic extra ction of both surface and valency frames of Czech verbs. First, it is clearly documented that the data from Prague Dependency Treebank is not sufficient for collecting enough examples of verb frames to build a large scale lexicon. As a solution, an approach to pick nice examples of sentences from any texts is suggested and thoroughly described. A new scripting language to simplify the selection of sentences based on linguistic criteria was imp lemented and its main concepts are presented here, too. Also the problems of extracting surface and valency frames from the collected data are addressed and illustrated on real corpus data. 1 Motivation At the current stage of the development, the accuracy of syntactic analysers of natural languages (in particular Czech) is limited due to the lack of large and precise lexicons of syntactic behaviour of individual words (verb valency frames are the most important example). Although some electronically available lexicons of Czech verbs exist (BRIEF for example), the information provided was collected by hand and suffers an important problem: The theoretical background for the lexicons was purely linguistic and its explanation for computational issues is rather complicated. The lexicons are therefore updated and new ones are built reflecting a theory more precise in the computa tional field as well. Unfortunately building such lexicons by hand is rather a time-consuming task, so that any kind of automatic preprocessing would help. This article describes the overall scenario and the main problems of extracting verb frames from corpora. The presented work was done within the framework of Functional Generative Description (FGD 1 ). In section 2 I summarize the basic notions of FGD relevant to verb frames extraction. In the following sections 3, 4 and 5 the extraction process and its problems are explained." @default.
- W2890784992 created "2018-09-27" @default.
- W2890784992 creator A5077746237 @default.
- W2890784992 date "2003-01-01" @default.
- W2890784992 modified "2023-09-26" @default.
- W2890784992 title "Towards Automatic Extraction of Verb Frames" @default.
- W2890784992 cites W1973021928 @default.
- W2890784992 cites W2029184000 @default.
- W2890784992 cites W2088198454 @default.
- W2890784992 cites W2122978558 @default.
- W2890784992 cites W2127009519 @default.
- W2890784992 cites W2951592458 @default.
- W2890784992 cites W3088924612 @default.
- W2890784992 cites W613990453 @default.
- W2890784992 cites W9857075 @default.
- W2890784992 cites W2498976460 @default.
- W2890784992 hasPublicationYear "2003" @default.
- W2890784992 type Work @default.
- W2890784992 sameAs 2890784992 @default.
- W2890784992 citedByCount "5" @default.
- W2890784992 countsByYear W28907849922012 @default.
- W2890784992 crossrefType "journal-article" @default.
- W2890784992 hasAuthorship W2890784992A5077746237 @default.
- W2890784992 hasConcept C111919701 @default.
- W2890784992 hasConcept C138885662 @default.
- W2890784992 hasConcept C139007053 @default.
- W2890784992 hasConcept C149782125 @default.
- W2890784992 hasConcept C154945302 @default.
- W2890784992 hasConcept C162324750 @default.
- W2890784992 hasConcept C187736073 @default.
- W2890784992 hasConcept C19768560 @default.
- W2890784992 hasConcept C204321447 @default.
- W2890784992 hasConcept C206134035 @default.
- W2890784992 hasConcept C207609745 @default.
- W2890784992 hasConcept C2776397901 @default.
- W2890784992 hasConcept C2777842544 @default.
- W2890784992 hasConcept C2778121359 @default.
- W2890784992 hasConcept C2780451532 @default.
- W2890784992 hasConcept C33923547 @default.
- W2890784992 hasConcept C34736171 @default.
- W2890784992 hasConcept C41008148 @default.
- W2890784992 hasConcept C41895202 @default.
- W2890784992 hasConcept C61423126 @default.
- W2890784992 hasConcept C81917197 @default.
- W2890784992 hasConceptScore W2890784992C111919701 @default.
- W2890784992 hasConceptScore W2890784992C138885662 @default.
- W2890784992 hasConceptScore W2890784992C139007053 @default.
- W2890784992 hasConceptScore W2890784992C149782125 @default.
- W2890784992 hasConceptScore W2890784992C154945302 @default.
- W2890784992 hasConceptScore W2890784992C162324750 @default.
- W2890784992 hasConceptScore W2890784992C187736073 @default.
- W2890784992 hasConceptScore W2890784992C19768560 @default.
- W2890784992 hasConceptScore W2890784992C204321447 @default.
- W2890784992 hasConceptScore W2890784992C206134035 @default.
- W2890784992 hasConceptScore W2890784992C207609745 @default.
- W2890784992 hasConceptScore W2890784992C2776397901 @default.
- W2890784992 hasConceptScore W2890784992C2777842544 @default.
- W2890784992 hasConceptScore W2890784992C2778121359 @default.
- W2890784992 hasConceptScore W2890784992C2780451532 @default.
- W2890784992 hasConceptScore W2890784992C33923547 @default.
- W2890784992 hasConceptScore W2890784992C34736171 @default.
- W2890784992 hasConceptScore W2890784992C41008148 @default.
- W2890784992 hasConceptScore W2890784992C41895202 @default.
- W2890784992 hasConceptScore W2890784992C61423126 @default.
- W2890784992 hasConceptScore W2890784992C81917197 @default.
- W2890784992 hasLocation W28907849921 @default.
- W2890784992 hasOpenAccess W2890784992 @default.
- W2890784992 hasPrimaryLocation W28907849921 @default.
- W2890784992 hasRelatedWork W1257142228 @default.
- W2890784992 hasRelatedWork W148747616 @default.
- W2890784992 hasRelatedWork W1507149490 @default.
- W2890784992 hasRelatedWork W1821579912 @default.
- W2890784992 hasRelatedWork W2038343676 @default.
- W2890784992 hasRelatedWork W2105642261 @default.
- W2890784992 hasRelatedWork W2112305403 @default.
- W2890784992 hasRelatedWork W2160158530 @default.
- W2890784992 hasRelatedWork W2246861883 @default.
- W2890784992 hasRelatedWork W2259432323 @default.
- W2890784992 hasRelatedWork W2275273624 @default.
- W2890784992 hasRelatedWork W2342495738 @default.
- W2890784992 hasRelatedWork W2555368418 @default.
- W2890784992 hasRelatedWork W2566813475 @default.
- W2890784992 hasRelatedWork W2735158229 @default.
- W2890784992 hasRelatedWork W3038030322 @default.
- W2890784992 hasRelatedWork W3092063216 @default.
- W2890784992 hasRelatedWork W1580996440 @default.
- W2890784992 hasRelatedWork W194136568 @default.
- W2890784992 hasRelatedWork W2558836210 @default.
- W2890784992 isParatext "false" @default.
- W2890784992 isRetracted "false" @default.
- W2890784992 magId "2890784992" @default.
- W2890784992 workType "article" @default.