Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890788786> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2890788786 abstract "Add a touch of data analytics to your healthcare systems and get insightful outcomesKey FeaturesPerform healthcare analytics with Python and SQLBuild predictive models on real healthcare data with pandas and scikit-learnUse analytics to improve healthcare performanceBook DescriptionIn recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists' work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes.This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed.By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples.What you will learnGain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processesUse SQL and Python to analyze dataMeasure healthcare quality and provider performanceIdentify features and attributes to build successful healthcare models Build predictive models using real-world healthcare dataBecome an expert in predictive modeling with structured clinical dataSee what lies ahead for healthcare analyticsWho this book is forHealthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare." @default.
- W2890788786 created "2018-09-27" @default.
- W2890788786 creator A5036015808 @default.
- W2890788786 date "2018-07-31" @default.
- W2890788786 modified "2023-09-23" @default.
- W2890788786 title "Healthcare Analytics Made Simple" @default.
- W2890788786 hasPublicationYear "2018" @default.
- W2890788786 type Work @default.
- W2890788786 sameAs 2890788786 @default.
- W2890788786 citedByCount "0" @default.
- W2890788786 crossrefType "book" @default.
- W2890788786 hasAuthorship W2890788786A5036015808 @default.
- W2890788786 hasConcept C124101348 @default.
- W2890788786 hasConcept C154945302 @default.
- W2890788786 hasConcept C160735492 @default.
- W2890788786 hasConcept C162324750 @default.
- W2890788786 hasConcept C175801342 @default.
- W2890788786 hasConcept C199360897 @default.
- W2890788786 hasConcept C2522767166 @default.
- W2890788786 hasConcept C2777648619 @default.
- W2890788786 hasConcept C41008148 @default.
- W2890788786 hasConcept C50522688 @default.
- W2890788786 hasConcept C510870499 @default.
- W2890788786 hasConcept C519991488 @default.
- W2890788786 hasConcept C77088390 @default.
- W2890788786 hasConcept C79158427 @default.
- W2890788786 hasConcept C83209312 @default.
- W2890788786 hasConceptScore W2890788786C124101348 @default.
- W2890788786 hasConceptScore W2890788786C154945302 @default.
- W2890788786 hasConceptScore W2890788786C160735492 @default.
- W2890788786 hasConceptScore W2890788786C162324750 @default.
- W2890788786 hasConceptScore W2890788786C175801342 @default.
- W2890788786 hasConceptScore W2890788786C199360897 @default.
- W2890788786 hasConceptScore W2890788786C2522767166 @default.
- W2890788786 hasConceptScore W2890788786C2777648619 @default.
- W2890788786 hasConceptScore W2890788786C41008148 @default.
- W2890788786 hasConceptScore W2890788786C50522688 @default.
- W2890788786 hasConceptScore W2890788786C510870499 @default.
- W2890788786 hasConceptScore W2890788786C519991488 @default.
- W2890788786 hasConceptScore W2890788786C77088390 @default.
- W2890788786 hasConceptScore W2890788786C79158427 @default.
- W2890788786 hasConceptScore W2890788786C83209312 @default.
- W2890788786 hasLocation W28907887861 @default.
- W2890788786 hasOpenAccess W2890788786 @default.
- W2890788786 hasPrimaryLocation W28907887861 @default.
- W2890788786 hasRelatedWork W1605886311 @default.
- W2890788786 hasRelatedWork W2036982078 @default.
- W2890788786 hasRelatedWork W2062629991 @default.
- W2890788786 hasRelatedWork W2091646954 @default.
- W2890788786 hasRelatedWork W2341286197 @default.
- W2890788786 hasRelatedWork W2341519927 @default.
- W2890788786 hasRelatedWork W2414554008 @default.
- W2890788786 hasRelatedWork W2466311041 @default.
- W2890788786 hasRelatedWork W2564406132 @default.
- W2890788786 hasRelatedWork W2739220786 @default.
- W2890788786 hasRelatedWork W2808055139 @default.
- W2890788786 hasRelatedWork W2891534466 @default.
- W2890788786 hasRelatedWork W2914018923 @default.
- W2890788786 hasRelatedWork W2975225250 @default.
- W2890788786 hasRelatedWork W3028640536 @default.
- W2890788786 hasRelatedWork W3105395035 @default.
- W2890788786 hasRelatedWork W3112977321 @default.
- W2890788786 hasRelatedWork W3152804902 @default.
- W2890788786 hasRelatedWork W3183519965 @default.
- W2890788786 hasRelatedWork W3205596135 @default.
- W2890788786 isParatext "false" @default.
- W2890788786 isRetracted "false" @default.
- W2890788786 magId "2890788786" @default.
- W2890788786 workType "book" @default.