Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890789817> ?p ?o ?g. }
- W2890789817 endingPage "7751" @default.
- W2890789817 startingPage "7733" @default.
- W2890789817 abstract "Abstract Subsurface flow and transport problems usually involve some degree of uncertainty. Polynomial chaos expansion can be used as surrogate of physical models for uncertainty quantification. However, a global model can hardly be found for model responses with strong nonlinearity or irregularity. In this study, we propose a novel approach by use of the classification method in machine learning, that is, supported vector machine, to cope with such nonlinearity/irregularity. Piecewise surrogate models are constructed in relatively smooth subdomains separated by the supported vector machine hyperplanes. We demonstrate the effectiveness of using the trained piecewise surrogate model in solute transport and two‐phase flow problems in homogeneous and heterogeneous porous media. The numerical results are compared with standard global polynomial chaos expansion results and the Monte Carlo benchmark. The proposed nonintrusive approach is able to accurately quantify uncertainty, with much smaller computational efforts." @default.
- W2890789817 created "2018-09-27" @default.
- W2890789817 creator A5009468081 @default.
- W2890789817 creator A5031218390 @default.
- W2890789817 date "2018-10-01" @default.
- W2890789817 modified "2023-10-15" @default.
- W2890789817 title "Uncertainty Quantification for Subsurface Flow and Transport: Coping With Nonlinearity/Irregularity via Polynomial Chaos Surrogate and Machine Learning" @default.
- W2890789817 cites W105972687 @default.
- W2890789817 cites W1548310890 @default.
- W2890789817 cites W1574558736 @default.
- W2890789817 cites W1604224450 @default.
- W2890789817 cites W1964699038 @default.
- W2890789817 cites W1967914875 @default.
- W2890789817 cites W1978744409 @default.
- W2890789817 cites W1983156129 @default.
- W2890789817 cites W1985483518 @default.
- W2890789817 cites W2005049310 @default.
- W2890789817 cites W2018159038 @default.
- W2890789817 cites W2026513846 @default.
- W2890789817 cites W2044858533 @default.
- W2890789817 cites W2045355467 @default.
- W2890789817 cites W2047644361 @default.
- W2890789817 cites W2055689370 @default.
- W2890789817 cites W2059164485 @default.
- W2890789817 cites W2082963207 @default.
- W2890789817 cites W2100474665 @default.
- W2890789817 cites W2113337191 @default.
- W2890789817 cites W2113517083 @default.
- W2890789817 cites W2114821552 @default.
- W2890789817 cites W2122903952 @default.
- W2890789817 cites W2139798157 @default.
- W2890789817 cites W2140586694 @default.
- W2890789817 cites W2140951396 @default.
- W2890789817 cites W2143024042 @default.
- W2890789817 cites W2153635508 @default.
- W2890789817 cites W2321957512 @default.
- W2890789817 cites W2497254580 @default.
- W2890789817 cites W2608282032 @default.
- W2890789817 cites W2768868668 @default.
- W2890789817 cites W2774030114 @default.
- W2890789817 cites W2795197113 @default.
- W2890789817 cites W2997857795 @default.
- W2890789817 cites W4230674625 @default.
- W2890789817 cites W4300580367 @default.
- W2890789817 doi "https://doi.org/10.1029/2018wr022676" @default.
- W2890789817 hasPublicationYear "2018" @default.
- W2890789817 type Work @default.
- W2890789817 sameAs 2890789817 @default.
- W2890789817 citedByCount "7" @default.
- W2890789817 countsByYear W28907898172019 @default.
- W2890789817 countsByYear W28907898172020 @default.
- W2890789817 countsByYear W28907898172021 @default.
- W2890789817 countsByYear W28907898172023 @default.
- W2890789817 crossrefType "journal-article" @default.
- W2890789817 hasAuthorship W2890789817A5009468081 @default.
- W2890789817 hasAuthorship W2890789817A5031218390 @default.
- W2890789817 hasConcept C105795698 @default.
- W2890789817 hasConcept C11413529 @default.
- W2890789817 hasConcept C119857082 @default.
- W2890789817 hasConcept C121332964 @default.
- W2890789817 hasConcept C12267149 @default.
- W2890789817 hasConcept C126255220 @default.
- W2890789817 hasConcept C131675550 @default.
- W2890789817 hasConcept C13280743 @default.
- W2890789817 hasConcept C134306372 @default.
- W2890789817 hasConcept C142806159 @default.
- W2890789817 hasConcept C154945302 @default.
- W2890789817 hasConcept C158622935 @default.
- W2890789817 hasConcept C164660894 @default.
- W2890789817 hasConcept C185798385 @default.
- W2890789817 hasConcept C19499675 @default.
- W2890789817 hasConcept C197656079 @default.
- W2890789817 hasConcept C205649164 @default.
- W2890789817 hasConcept C2524010 @default.
- W2890789817 hasConcept C28826006 @default.
- W2890789817 hasConcept C32230216 @default.
- W2890789817 hasConcept C33923547 @default.
- W2890789817 hasConcept C38349280 @default.
- W2890789817 hasConcept C41008148 @default.
- W2890789817 hasConcept C62520636 @default.
- W2890789817 hasConcept C90119067 @default.
- W2890789817 hasConceptScore W2890789817C105795698 @default.
- W2890789817 hasConceptScore W2890789817C11413529 @default.
- W2890789817 hasConceptScore W2890789817C119857082 @default.
- W2890789817 hasConceptScore W2890789817C121332964 @default.
- W2890789817 hasConceptScore W2890789817C12267149 @default.
- W2890789817 hasConceptScore W2890789817C126255220 @default.
- W2890789817 hasConceptScore W2890789817C131675550 @default.
- W2890789817 hasConceptScore W2890789817C13280743 @default.
- W2890789817 hasConceptScore W2890789817C134306372 @default.
- W2890789817 hasConceptScore W2890789817C142806159 @default.
- W2890789817 hasConceptScore W2890789817C154945302 @default.
- W2890789817 hasConceptScore W2890789817C158622935 @default.
- W2890789817 hasConceptScore W2890789817C164660894 @default.
- W2890789817 hasConceptScore W2890789817C185798385 @default.
- W2890789817 hasConceptScore W2890789817C19499675 @default.
- W2890789817 hasConceptScore W2890789817C197656079 @default.
- W2890789817 hasConceptScore W2890789817C205649164 @default.