Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890790222> ?p ?o ?g. }
- W2890790222 endingPage "900" @default.
- W2890790222 startingPage "889" @default.
- W2890790222 abstract "This paper presents a novel method for reliable and efficient spatial-spectral classification of hyperspectral data. This algorithm is based on the Bayesian labelling by combining the results of the Gaussian mixture model (GMM) with spatial-contextual information extracted by Markov random fields (MRF). Moreover, a new fuzzy segmentation-based function was defined and incorporated into the spatial energy involved to improve the performance of MRF. To evaluate the proposed algorithm in real analysis scenarios, three benchmark hyperspectral datasets, i.e. Indian Pines, Pavia University and Salinas, were used. Experimental results demonstrated that the proposed method could considerably improve the classification’s overall accuracies when compared to conventional MRF-based approaches." @default.
- W2890790222 created "2018-09-27" @default.
- W2890790222 creator A5003182960 @default.
- W2890790222 creator A5063724972 @default.
- W2890790222 creator A5074919292 @default.
- W2890790222 creator A5091887664 @default.
- W2890790222 date "2018-01-01" @default.
- W2890790222 modified "2023-09-27" @default.
- W2890790222 title "Gaussian mixture model and Markov random fields for hyperspectral image classification" @default.
- W2890790222 cites W1554544485 @default.
- W2890790222 cites W1974524700 @default.
- W2890790222 cites W2008835672 @default.
- W2890790222 cites W2015245929 @default.
- W2890790222 cites W2022686119 @default.
- W2890790222 cites W2062964394 @default.
- W2890790222 cites W2064604707 @default.
- W2890790222 cites W2067191022 @default.
- W2890790222 cites W2102150301 @default.
- W2890790222 cites W2104269704 @default.
- W2890790222 cites W2113137767 @default.
- W2890790222 cites W2119897980 @default.
- W2890790222 cites W2131697388 @default.
- W2890790222 cites W2131864940 @default.
- W2890790222 cites W2141775747 @default.
- W2890790222 cites W2151599207 @default.
- W2890790222 cites W2158400785 @default.
- W2890790222 cites W2164330327 @default.
- W2890790222 cites W2164437025 @default.
- W2890790222 cites W2164500538 @default.
- W2890790222 cites W2164918853 @default.
- W2890790222 cites W2167277498 @default.
- W2890790222 cites W2283858015 @default.
- W2890790222 cites W2346557146 @default.
- W2890790222 cites W2412925410 @default.
- W2890790222 cites W2620830647 @default.
- W2890790222 cites W2983923309 @default.
- W2890790222 cites W4231113167 @default.
- W2890790222 doi "https://doi.org/10.1080/22797254.2018.1503565" @default.
- W2890790222 hasPublicationYear "2018" @default.
- W2890790222 type Work @default.
- W2890790222 sameAs 2890790222 @default.
- W2890790222 citedByCount "4" @default.
- W2890790222 countsByYear W28907902222020 @default.
- W2890790222 countsByYear W28907902222022 @default.
- W2890790222 countsByYear W28907902222023 @default.
- W2890790222 crossrefType "journal-article" @default.
- W2890790222 hasAuthorship W2890790222A5003182960 @default.
- W2890790222 hasAuthorship W2890790222A5063724972 @default.
- W2890790222 hasAuthorship W2890790222A5074919292 @default.
- W2890790222 hasAuthorship W2890790222A5091887664 @default.
- W2890790222 hasBestOaLocation W28907902221 @default.
- W2890790222 hasConcept C105795698 @default.
- W2890790222 hasConcept C107673813 @default.
- W2890790222 hasConcept C121332964 @default.
- W2890790222 hasConcept C124504099 @default.
- W2890790222 hasConcept C130402806 @default.
- W2890790222 hasConcept C153180895 @default.
- W2890790222 hasConcept C154945302 @default.
- W2890790222 hasConcept C159078339 @default.
- W2890790222 hasConcept C159620131 @default.
- W2890790222 hasConcept C163716315 @default.
- W2890790222 hasConcept C185798385 @default.
- W2890790222 hasConcept C205649164 @default.
- W2890790222 hasConcept C2778045648 @default.
- W2890790222 hasConcept C33923547 @default.
- W2890790222 hasConcept C41008148 @default.
- W2890790222 hasConcept C58640448 @default.
- W2890790222 hasConcept C61224824 @default.
- W2890790222 hasConcept C62520636 @default.
- W2890790222 hasConcept C89600930 @default.
- W2890790222 hasConceptScore W2890790222C105795698 @default.
- W2890790222 hasConceptScore W2890790222C107673813 @default.
- W2890790222 hasConceptScore W2890790222C121332964 @default.
- W2890790222 hasConceptScore W2890790222C124504099 @default.
- W2890790222 hasConceptScore W2890790222C130402806 @default.
- W2890790222 hasConceptScore W2890790222C153180895 @default.
- W2890790222 hasConceptScore W2890790222C154945302 @default.
- W2890790222 hasConceptScore W2890790222C159078339 @default.
- W2890790222 hasConceptScore W2890790222C159620131 @default.
- W2890790222 hasConceptScore W2890790222C163716315 @default.
- W2890790222 hasConceptScore W2890790222C185798385 @default.
- W2890790222 hasConceptScore W2890790222C205649164 @default.
- W2890790222 hasConceptScore W2890790222C2778045648 @default.
- W2890790222 hasConceptScore W2890790222C33923547 @default.
- W2890790222 hasConceptScore W2890790222C41008148 @default.
- W2890790222 hasConceptScore W2890790222C58640448 @default.
- W2890790222 hasConceptScore W2890790222C61224824 @default.
- W2890790222 hasConceptScore W2890790222C62520636 @default.
- W2890790222 hasConceptScore W2890790222C89600930 @default.
- W2890790222 hasIssue "1" @default.
- W2890790222 hasLocation W28907902221 @default.
- W2890790222 hasLocation W28907902222 @default.
- W2890790222 hasOpenAccess W2890790222 @default.
- W2890790222 hasPrimaryLocation W28907902221 @default.
- W2890790222 hasRelatedWork W1977295039 @default.
- W2890790222 hasRelatedWork W2098235650 @default.
- W2890790222 hasRelatedWork W2166767718 @default.
- W2890790222 hasRelatedWork W2544832372 @default.