Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890803520> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2890803520 endingPage "619" @default.
- W2890803520 startingPage "611" @default.
- W2890803520 abstract "In colon cancer screening, polyp size estimation using only colonoscopy images or videos is difficult even for expert physicians although the size information of polyps is important for diagnosis. Towards the fully automated computer-aided diagnosis (CAD) pipeline, a robust and precise polyp size estimation method is highly desired. However, the size estimation problem of a three-dimensional object from a two-dimensional image is ill-posed due to the lack of three-dimensional spatial information. To circumvent this challenge, we formulate a relaxed form of size estimation as a binary classification problem and solve it by a new deep neural network architecture: BseNet. This relaxed form of size estimation is defined as a two-category classification: under and over a certain polyp dimension criterion that would provoke different clinical treatments (resecting the polyp or not). BseNet estimates the depth map image from an input colonoscopic RGB image using unsupervised deep learning, and integrates RGB with the computed depth information to produce a four-channel RGB-D imagery data, that is subsequently encoded by BseNet to extract deep RGB-D image features and facilitate the size classification into two categories: under and over 10 mm polyps. For the evaluation of BseNet, a large dataset of colonoscopic videos of totally over 16 h is constructed. We evaluate the accuracies of both binary polyp size estimation and polyp detection performance since detection is a prerequisite step of a fully automated CAD system. The experimental results show that our proposed BseNet achieves 79.2 % accuracy for binary polyp-size classification. We also combine the image feature extraction by BseNet and classification of short video clips using a long short-term memory (LSTM) network. Polyp detection (if the video clip contains a polyp or not) shows 88.8 % sensitivity when employing the spatio-temporal image feature extraction and classification." @default.
- W2890803520 created "2018-09-27" @default.
- W2890803520 creator A5004080101 @default.
- W2890803520 creator A5032527419 @default.
- W2890803520 creator A5043710204 @default.
- W2890803520 creator A5045227579 @default.
- W2890803520 creator A5051119293 @default.
- W2890803520 creator A5054095765 @default.
- W2890803520 creator A5074920808 @default.
- W2890803520 creator A5086595860 @default.
- W2890803520 date "2018-01-01" @default.
- W2890803520 modified "2023-10-16" @default.
- W2890803520 title "Towards Automated Colonoscopy Diagnosis: Binary Polyp Size Estimation via Unsupervised Depth Learning" @default.
- W2890803520 cites W1522734439 @default.
- W2890803520 cites W2034269173 @default.
- W2890803520 cites W2038660010 @default.
- W2890803520 cites W2064675550 @default.
- W2890803520 cites W2076522911 @default.
- W2890803520 cites W2586952804 @default.
- W2890803520 cites W2609883120 @default.
- W2890803520 cites W3100388886 @default.
- W2890803520 doi "https://doi.org/10.1007/978-3-030-00934-2_68" @default.
- W2890803520 hasPublicationYear "2018" @default.
- W2890803520 type Work @default.
- W2890803520 sameAs 2890803520 @default.
- W2890803520 citedByCount "7" @default.
- W2890803520 countsByYear W28908035202019 @default.
- W2890803520 countsByYear W28908035202020 @default.
- W2890803520 countsByYear W28908035202021 @default.
- W2890803520 countsByYear W28908035202022 @default.
- W2890803520 crossrefType "book-chapter" @default.
- W2890803520 hasAuthorship W2890803520A5004080101 @default.
- W2890803520 hasAuthorship W2890803520A5032527419 @default.
- W2890803520 hasAuthorship W2890803520A5043710204 @default.
- W2890803520 hasAuthorship W2890803520A5045227579 @default.
- W2890803520 hasAuthorship W2890803520A5051119293 @default.
- W2890803520 hasAuthorship W2890803520A5054095765 @default.
- W2890803520 hasAuthorship W2890803520A5074920808 @default.
- W2890803520 hasAuthorship W2890803520A5086595860 @default.
- W2890803520 hasConcept C121608353 @default.
- W2890803520 hasConcept C126322002 @default.
- W2890803520 hasConcept C153180895 @default.
- W2890803520 hasConcept C154945302 @default.
- W2890803520 hasConcept C2778435480 @default.
- W2890803520 hasConcept C31972630 @default.
- W2890803520 hasConcept C33923547 @default.
- W2890803520 hasConcept C41008148 @default.
- W2890803520 hasConcept C48372109 @default.
- W2890803520 hasConcept C526805850 @default.
- W2890803520 hasConcept C71924100 @default.
- W2890803520 hasConcept C8038995 @default.
- W2890803520 hasConcept C94375191 @default.
- W2890803520 hasConceptScore W2890803520C121608353 @default.
- W2890803520 hasConceptScore W2890803520C126322002 @default.
- W2890803520 hasConceptScore W2890803520C153180895 @default.
- W2890803520 hasConceptScore W2890803520C154945302 @default.
- W2890803520 hasConceptScore W2890803520C2778435480 @default.
- W2890803520 hasConceptScore W2890803520C31972630 @default.
- W2890803520 hasConceptScore W2890803520C33923547 @default.
- W2890803520 hasConceptScore W2890803520C41008148 @default.
- W2890803520 hasConceptScore W2890803520C48372109 @default.
- W2890803520 hasConceptScore W2890803520C526805850 @default.
- W2890803520 hasConceptScore W2890803520C71924100 @default.
- W2890803520 hasConceptScore W2890803520C8038995 @default.
- W2890803520 hasConceptScore W2890803520C94375191 @default.
- W2890803520 hasLocation W28908035201 @default.
- W2890803520 hasOpenAccess W2890803520 @default.
- W2890803520 hasPrimaryLocation W28908035201 @default.
- W2890803520 hasRelatedWork W1548481688 @default.
- W2890803520 hasRelatedWork W2026253357 @default.
- W2890803520 hasRelatedWork W2292254049 @default.
- W2890803520 hasRelatedWork W2591023681 @default.
- W2890803520 hasRelatedWork W2592385986 @default.
- W2890803520 hasRelatedWork W2695951553 @default.
- W2890803520 hasRelatedWork W2774265604 @default.
- W2890803520 hasRelatedWork W2775464024 @default.
- W2890803520 hasRelatedWork W2899683012 @default.
- W2890803520 hasRelatedWork W3108696707 @default.
- W2890803520 isParatext "false" @default.
- W2890803520 isRetracted "false" @default.
- W2890803520 magId "2890803520" @default.
- W2890803520 workType "book-chapter" @default.