Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890816417> ?p ?o ?g. }
- W2890816417 endingPage "572" @default.
- W2890816417 startingPage "555" @default.
- W2890816417 abstract "Unmanned aerial vehicle (UAV) platforms are rapidly becoming popular in many research and industry sectors. Due to their relatively low purchase price and the fact they can be used to monitor areas that are difficult or even unsafe to access, they have been increasingly used in land surveying and mapping of smaller areas. Numerous UAV platforms equipped with various cameras are increasingly available on the market, differing in their suitability for environmental mapping. Surveyors therefore face a question whether to buy or assemble their own UAV. The objective of this study is to assess the performance of two fixed-wing UAV systems for land survey and mapping applications. In particular, we: (1) compared a commercial eBee platform equipped with a Sony Cybershot DSC-WX220 camera with zoom lens and a home assembled EasyStar II equipped with Nikon Coolpix A with a lens of fixed focal length to find out if a home-assembled solution can compete with specialized commercial platform; (2) investigated the utilization of UAV images acquired under leaf-off conditions for digital terrain model (DTM) generation with respect to vegetation cover (steppes and forests); (3) assessed whether an increase in the image quantity can compensate for a lower quality of images; and (4) compared the DTM derived from UAV imagery with the official Czech Republic airborne laser scanning (ALS)-derived DTM. One flight with Easystar II and two perpendicular flights with eBee were performed. From these three flights, four point clouds were derived (one from each flight, and one resulting from a combination of two eBee flights), supplemented with four ground filtered point clouds. The accuracy of point clouds and DTM was assessed through a comparison with a conventional GNSS survey. We successfully identified the bare ground during the leaf-off period in the deciduous forest using images from both platforms. Point densities of point clouds acquired with Easystar II exceeded the densities of those acquired with eBee even after combining images from two eBee flights. Root mean square error of all derived point clouds ranged between 0.11 and 0.19 m, exceeding the accuracy of a nationwide ALS-derived DTM in both forest and open steppe areas. The most accurate point cloud was acquired using Easystar II. This is likely due to a combined effect of the quality of onboard cameras, camera settings and environmental conditions during the flight. For users who prefer to have greater control over their options rather than being dependent on the commercially available kit solution, home-assembled kits utilizing drones capable of carrying any camera available on the market may be an advantage." @default.
- W2890816417 created "2018-09-27" @default.
- W2890816417 creator A5050597521 @default.
- W2890816417 creator A5052382820 @default.
- W2890816417 creator A5053380896 @default.
- W2890816417 creator A5064785091 @default.
- W2890816417 creator A5073317056 @default.
- W2890816417 creator A5074188709 @default.
- W2890816417 date "2018-09-10" @default.
- W2890816417 modified "2023-09-28" @default.
- W2890816417 title "Comparison of a commercial and home-assembled fixed-wing UAV for terrain mapping of a post-mining site under leaf-off conditions" @default.
- W2890816417 cites W1175324494 @default.
- W2890816417 cites W1528125504 @default.
- W2890816417 cites W1532175189 @default.
- W2890816417 cites W1547669723 @default.
- W2890816417 cites W1966652221 @default.
- W2890816417 cites W1972962987 @default.
- W2890816417 cites W1981527205 @default.
- W2890816417 cites W1982926307 @default.
- W2890816417 cites W1995569123 @default.
- W2890816417 cites W2001994196 @default.
- W2890816417 cites W2010102575 @default.
- W2890816417 cites W2010221273 @default.
- W2890816417 cites W2014091167 @default.
- W2890816417 cites W2019400639 @default.
- W2890816417 cites W2034729186 @default.
- W2890816417 cites W2051688089 @default.
- W2890816417 cites W2059472991 @default.
- W2890816417 cites W2077506694 @default.
- W2890816417 cites W2136593096 @default.
- W2890816417 cites W2158336157 @default.
- W2890816417 cites W2161683853 @default.
- W2890816417 cites W2192910998 @default.
- W2890816417 cites W2229870314 @default.
- W2890816417 cites W2315668555 @default.
- W2890816417 cites W2363840598 @default.
- W2890816417 cites W2493357618 @default.
- W2890816417 cites W2556502614 @default.
- W2890816417 cites W2558832094 @default.
- W2890816417 cites W2573495669 @default.
- W2890816417 cites W2594726055 @default.
- W2890816417 cites W2610360588 @default.
- W2890816417 cites W2618882524 @default.
- W2890816417 cites W2752693858 @default.
- W2890816417 cites W324639438 @default.
- W2890816417 cites W4237198128 @default.
- W2890816417 cites W4237988927 @default.
- W2890816417 doi "https://doi.org/10.1080/01431161.2018.1516311" @default.
- W2890816417 hasPublicationYear "2018" @default.
- W2890816417 type Work @default.
- W2890816417 sameAs 2890816417 @default.
- W2890816417 citedByCount "23" @default.
- W2890816417 countsByYear W28908164172019 @default.
- W2890816417 countsByYear W28908164172020 @default.
- W2890816417 countsByYear W28908164172021 @default.
- W2890816417 countsByYear W28908164172022 @default.
- W2890816417 countsByYear W28908164172023 @default.
- W2890816417 crossrefType "journal-article" @default.
- W2890816417 hasAuthorship W2890816417A5050597521 @default.
- W2890816417 hasAuthorship W2890816417A5052382820 @default.
- W2890816417 hasAuthorship W2890816417A5053380896 @default.
- W2890816417 hasAuthorship W2890816417A5064785091 @default.
- W2890816417 hasAuthorship W2890816417A5073317056 @default.
- W2890816417 hasAuthorship W2890816417A5074188709 @default.
- W2890816417 hasConcept C124913957 @default.
- W2890816417 hasConcept C127313418 @default.
- W2890816417 hasConcept C127413603 @default.
- W2890816417 hasConcept C131979681 @default.
- W2890816417 hasConcept C146978453 @default.
- W2890816417 hasConcept C15336307 @default.
- W2890816417 hasConcept C154945302 @default.
- W2890816417 hasConcept C161840515 @default.
- W2890816417 hasConcept C176262533 @default.
- W2890816417 hasConcept C181672929 @default.
- W2890816417 hasConcept C181843262 @default.
- W2890816417 hasConcept C205649164 @default.
- W2890816417 hasConcept C2777750367 @default.
- W2890816417 hasConcept C3018522811 @default.
- W2890816417 hasConcept C31972630 @default.
- W2890816417 hasConcept C39432304 @default.
- W2890816417 hasConcept C41008148 @default.
- W2890816417 hasConcept C58640448 @default.
- W2890816417 hasConcept C62649853 @default.
- W2890816417 hasConcept C78762247 @default.
- W2890816417 hasConcept C82789328 @default.
- W2890816417 hasConcept C97257150 @default.
- W2890816417 hasConceptScore W2890816417C124913957 @default.
- W2890816417 hasConceptScore W2890816417C127313418 @default.
- W2890816417 hasConceptScore W2890816417C127413603 @default.
- W2890816417 hasConceptScore W2890816417C131979681 @default.
- W2890816417 hasConceptScore W2890816417C146978453 @default.
- W2890816417 hasConceptScore W2890816417C15336307 @default.
- W2890816417 hasConceptScore W2890816417C154945302 @default.
- W2890816417 hasConceptScore W2890816417C161840515 @default.
- W2890816417 hasConceptScore W2890816417C176262533 @default.
- W2890816417 hasConceptScore W2890816417C181672929 @default.
- W2890816417 hasConceptScore W2890816417C181843262 @default.
- W2890816417 hasConceptScore W2890816417C205649164 @default.