Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890816492> ?p ?o ?g. }
- W2890816492 endingPage "143" @default.
- W2890816492 startingPage "128" @default.
- W2890816492 abstract "In this work we integrate ideas from surface-based modeling with neural synthesis: we propose a combination of surface-based pose estimation and deep generative models that allows us to perform accurate pose transfer, i.e. synthesize a new image of a person based on a single image of that person and the image of a pose donor. We use a dense pose estimation system that maps pixels from both images to a common surface-based coordinate system, allowing the two images to be brought in correspondence with each other. We inpaint and refine the source image intensities in the surface coordinate system, prior to warping them onto the target pose. These predictions are fused with those of a convolutional predictive module through a neural synthesis module allowing for training the whole pipeline jointly end-to-end, optimizing a combination of adversarial and perceptual losses. We show that dense pose estimation is a substantially more powerful conditioning input than landmark-, or mask-based alternatives, and report systematic improvements over state of the art generators on DeepFashion and MVC datasets." @default.
- W2890816492 created "2018-09-27" @default.
- W2890816492 creator A5036438597 @default.
- W2890816492 creator A5077035803 @default.
- W2890816492 creator A5084952250 @default.
- W2890816492 date "2018-01-01" @default.
- W2890816492 modified "2023-10-09" @default.
- W2890816492 title "Dense Pose Transfer" @default.
- W2890816492 cites W1967554269 @default.
- W2890816492 cites W2100495367 @default.
- W2890816492 cites W2133665775 @default.
- W2890816492 cites W2331128040 @default.
- W2890816492 cites W2471768434 @default.
- W2890816492 cites W2483862638 @default.
- W2890816492 cites W2559085405 @default.
- W2890816492 cites W2560535660 @default.
- W2890816492 cites W2572730214 @default.
- W2890816492 cites W2573098616 @default.
- W2890816492 cites W2576289912 @default.
- W2890816492 cites W2593414223 @default.
- W2890816492 cites W2607170299 @default.
- W2890816492 cites W2771558241 @default.
- W2890816492 cites W2772024431 @default.
- W2890816492 cites W2963073614 @default.
- W2890816492 cites W2963097270 @default.
- W2890816492 cites W2963420272 @default.
- W2890816492 cites W2963522749 @default.
- W2890816492 cites W2963630103 @default.
- W2890816492 cites W2963709863 @default.
- W2890816492 cites W2963800363 @default.
- W2890816492 cites W2963876278 @default.
- W2890816492 cites W2963917315 @default.
- W2890816492 cites W2963920537 @default.
- W2890816492 cites W2963995996 @default.
- W2890816492 cites W2964002510 @default.
- W2890816492 cites W2964145484 @default.
- W2890816492 cites W2964318046 @default.
- W2890816492 cites W3106250896 @default.
- W2890816492 doi "https://doi.org/10.1007/978-3-030-01219-9_8" @default.
- W2890816492 hasPublicationYear "2018" @default.
- W2890816492 type Work @default.
- W2890816492 sameAs 2890816492 @default.
- W2890816492 citedByCount "152" @default.
- W2890816492 countsByYear W28908164922018 @default.
- W2890816492 countsByYear W28908164922019 @default.
- W2890816492 countsByYear W28908164922020 @default.
- W2890816492 countsByYear W28908164922021 @default.
- W2890816492 countsByYear W28908164922022 @default.
- W2890816492 countsByYear W28908164922023 @default.
- W2890816492 crossrefType "book-chapter" @default.
- W2890816492 hasAuthorship W2890816492A5036438597 @default.
- W2890816492 hasAuthorship W2890816492A5077035803 @default.
- W2890816492 hasAuthorship W2890816492A5084952250 @default.
- W2890816492 hasConcept C104317684 @default.
- W2890816492 hasConcept C150899416 @default.
- W2890816492 hasConcept C153180895 @default.
- W2890816492 hasConcept C154945302 @default.
- W2890816492 hasConcept C157202957 @default.
- W2890816492 hasConcept C160633673 @default.
- W2890816492 hasConcept C185592680 @default.
- W2890816492 hasConcept C199360897 @default.
- W2890816492 hasConcept C204241405 @default.
- W2890816492 hasConcept C2524010 @default.
- W2890816492 hasConcept C2776799497 @default.
- W2890816492 hasConcept C2780297707 @default.
- W2890816492 hasConcept C31972630 @default.
- W2890816492 hasConcept C33923547 @default.
- W2890816492 hasConcept C36613465 @default.
- W2890816492 hasConcept C41008148 @default.
- W2890816492 hasConcept C43521106 @default.
- W2890816492 hasConcept C52102323 @default.
- W2890816492 hasConcept C55493867 @default.
- W2890816492 hasConcept C80551277 @default.
- W2890816492 hasConcept C81363708 @default.
- W2890816492 hasConceptScore W2890816492C104317684 @default.
- W2890816492 hasConceptScore W2890816492C150899416 @default.
- W2890816492 hasConceptScore W2890816492C153180895 @default.
- W2890816492 hasConceptScore W2890816492C154945302 @default.
- W2890816492 hasConceptScore W2890816492C157202957 @default.
- W2890816492 hasConceptScore W2890816492C160633673 @default.
- W2890816492 hasConceptScore W2890816492C185592680 @default.
- W2890816492 hasConceptScore W2890816492C199360897 @default.
- W2890816492 hasConceptScore W2890816492C204241405 @default.
- W2890816492 hasConceptScore W2890816492C2524010 @default.
- W2890816492 hasConceptScore W2890816492C2776799497 @default.
- W2890816492 hasConceptScore W2890816492C2780297707 @default.
- W2890816492 hasConceptScore W2890816492C31972630 @default.
- W2890816492 hasConceptScore W2890816492C33923547 @default.
- W2890816492 hasConceptScore W2890816492C36613465 @default.
- W2890816492 hasConceptScore W2890816492C41008148 @default.
- W2890816492 hasConceptScore W2890816492C43521106 @default.
- W2890816492 hasConceptScore W2890816492C52102323 @default.
- W2890816492 hasConceptScore W2890816492C55493867 @default.
- W2890816492 hasConceptScore W2890816492C80551277 @default.
- W2890816492 hasConceptScore W2890816492C81363708 @default.
- W2890816492 hasLocation W28908164921 @default.
- W2890816492 hasOpenAccess W2890816492 @default.
- W2890816492 hasPrimaryLocation W28908164921 @default.