Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890816772> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2890816772 abstract "Study purpose. Existing approaches to forecasting dynamics of financial markets, as a rule, reduce to econometric calculations or technical analysis techniques, which in turn is a consequence of preferences among specialists, engaged in theoretical research and professional market participants, respectively. The main study purpose is developing a predictive economic-mathematical model that allows combining both approaches. In other words, this model should be estimated using traditional methods of econometrics and, at the same time, take into account the impact on the pricing process of the effect of clustering participants on behavioral patterns, as the basis of technical analysis. In addition, it is necessary that the created economic-mathematical model should take into account the phenomenon of existing historical trading levels and control the influence they exert on price dynamics, when it falls into local areas of these levels. Such analysis of price behavior patterns in certain areas of historical repeating levels is a popular approach among professional market participants. Besides, an important criterion of developing model’s potential applicability by a wide range of the interested specialists is its general functional form’s simplicity and, in particular, its components. Materials and methods . In the study, the market of the pound sterling exchange rate against the US dollar (GBP/USD) for the whole period of 2017 was chosen as the considered financial series, in order to forecast it. The presented economic-mathematical model was estimated by classical Kalman filter with an embedded neural network. The choice of these assessment tools can be explained by their wide capabilities in dealing with non-stationary, noisy financial market time series. In addition, applying Kalman filter is a popular technique for estimation local-level models, which principle was implemented in the newly model, proposed in article. Results . Using chosen approach of simultaneous applying Kalman filter and artificial neural network, there were obtained statistically significant estimations of all model’s coefficients. The subsequent model application on GBP/USD series from the test dataset allowed demonstrating its high predictive ability comparing with added random walk model, in particular judging by percentage of correct forecast directions. All received results have confirmed that constructed model allows effectively taking into account structural features of considered market and building good forecasts of future price dynamics. Conclusion . The study was focused on developing and improving apparatus of forecasting financial market prices dynamics. In turn, economic-mathematical model presented in that paper can be used both by specialists, carrying out theoretical studies of pricing process in financial markets, and by professional market participants, forecasting the direction of future price movements. High percentage of correct forecast directions makes it possible to use proposed model independently or as a confirmatory tool." @default.
- W2890816772 created "2018-09-27" @default.
- W2890816772 creator A5007350142 @default.
- W2890816772 date "2018-09-04" @default.
- W2890816772 modified "2023-09-26" @default.
- W2890816772 title "Economic-mathematical model for predicting financial market dynamics" @default.
- W2890816772 cites W1537415400 @default.
- W2890816772 cites W1970495888 @default.
- W2890816772 cites W1977431865 @default.
- W2890816772 cites W1979575715 @default.
- W2890816772 cites W2006128341 @default.
- W2890816772 cites W2016469924 @default.
- W2890816772 cites W2031753087 @default.
- W2890816772 cites W2034802027 @default.
- W2890816772 cites W2038224101 @default.
- W2890816772 cites W2053640051 @default.
- W2890816772 cites W2077066086 @default.
- W2890816772 cites W2081207514 @default.
- W2890816772 cites W2092885781 @default.
- W2890816772 cites W2097395378 @default.
- W2890816772 cites W2102567944 @default.
- W2890816772 cites W2105934661 @default.
- W2890816772 cites W2142859226 @default.
- W2890816772 cites W2152135597 @default.
- W2890816772 cites W2222363377 @default.
- W2890816772 cites W2330024865 @default.
- W2890816772 cites W3124655134 @default.
- W2890816772 cites W4231546411 @default.
- W2890816772 doi "https://doi.org/10.21686/2500-3925-2018-4-61-69" @default.
- W2890816772 hasPublicationYear "2018" @default.
- W2890816772 type Work @default.
- W2890816772 sameAs 2890816772 @default.
- W2890816772 citedByCount "0" @default.
- W2890816772 crossrefType "journal-article" @default.
- W2890816772 hasAuthorship W2890816772A5007350142 @default.
- W2890816772 hasBestOaLocation W28908167721 @default.
- W2890816772 hasConcept C10138342 @default.
- W2890816772 hasConcept C106159729 @default.
- W2890816772 hasConcept C109168655 @default.
- W2890816772 hasConcept C111472728 @default.
- W2890816772 hasConcept C111919701 @default.
- W2890816772 hasConcept C117245426 @default.
- W2890816772 hasConcept C138885662 @default.
- W2890816772 hasConcept C149782125 @default.
- W2890816772 hasConcept C162324750 @default.
- W2890816772 hasConcept C180075932 @default.
- W2890816772 hasConcept C182306322 @default.
- W2890816772 hasConcept C19244329 @default.
- W2890816772 hasConcept C2776372474 @default.
- W2890816772 hasConcept C33923547 @default.
- W2890816772 hasConcept C41008148 @default.
- W2890816772 hasConcept C42475967 @default.
- W2890816772 hasConcept C98045186 @default.
- W2890816772 hasConceptScore W2890816772C10138342 @default.
- W2890816772 hasConceptScore W2890816772C106159729 @default.
- W2890816772 hasConceptScore W2890816772C109168655 @default.
- W2890816772 hasConceptScore W2890816772C111472728 @default.
- W2890816772 hasConceptScore W2890816772C111919701 @default.
- W2890816772 hasConceptScore W2890816772C117245426 @default.
- W2890816772 hasConceptScore W2890816772C138885662 @default.
- W2890816772 hasConceptScore W2890816772C149782125 @default.
- W2890816772 hasConceptScore W2890816772C162324750 @default.
- W2890816772 hasConceptScore W2890816772C180075932 @default.
- W2890816772 hasConceptScore W2890816772C182306322 @default.
- W2890816772 hasConceptScore W2890816772C19244329 @default.
- W2890816772 hasConceptScore W2890816772C2776372474 @default.
- W2890816772 hasConceptScore W2890816772C33923547 @default.
- W2890816772 hasConceptScore W2890816772C41008148 @default.
- W2890816772 hasConceptScore W2890816772C42475967 @default.
- W2890816772 hasConceptScore W2890816772C98045186 @default.
- W2890816772 hasLocation W28908167721 @default.
- W2890816772 hasOpenAccess W2890816772 @default.
- W2890816772 hasPrimaryLocation W28908167721 @default.
- W2890816772 hasRelatedWork W1452184795 @default.
- W2890816772 hasRelatedWork W1744688439 @default.
- W2890816772 hasRelatedWork W1799165703 @default.
- W2890816772 hasRelatedWork W1979313959 @default.
- W2890816772 hasRelatedWork W1998075225 @default.
- W2890816772 hasRelatedWork W2057436548 @default.
- W2890816772 hasRelatedWork W2073668062 @default.
- W2890816772 hasRelatedWork W2098277398 @default.
- W2890816772 hasRelatedWork W2107171938 @default.
- W2890816772 hasRelatedWork W2394813033 @default.
- W2890816772 hasRelatedWork W2592805030 @default.
- W2890816772 hasRelatedWork W2807765685 @default.
- W2890816772 hasRelatedWork W2897400362 @default.
- W2890816772 hasRelatedWork W2898695968 @default.
- W2890816772 hasRelatedWork W2901060277 @default.
- W2890816772 hasRelatedWork W2963288733 @default.
- W2890816772 hasRelatedWork W3088993547 @default.
- W2890816772 hasRelatedWork W3117094861 @default.
- W2890816772 hasRelatedWork W3203544503 @default.
- W2890816772 hasRelatedWork W97883415 @default.
- W2890816772 isParatext "false" @default.
- W2890816772 isRetracted "false" @default.
- W2890816772 magId "2890816772" @default.
- W2890816772 workType "article" @default.