Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890820198> ?p ?o ?g. }
- W2890820198 endingPage "782" @default.
- W2890820198 startingPage "772" @default.
- W2890820198 abstract "The multi-task learning framework that considers pedestrian detection and person re-identification jointly is an effective solution for person search. However, the existing joint frameworks simply share the backbone network without considering the negative interaction between the two tasks. To alleviate this conflict and meet the different requirements in detection and re-identification, a Partially Separated Network (PSN) for person search is proposed in this paper. Unlike the traditional joint frameworks, our backbone network is partially separated for detection and identification, and feature maps with different scales are provided according to different characteristics. Our experiment results have demonstrated that on CUHK-SYSU dataset our mAP and top-1 on ResNet-50 are 5.4% and 4.4% higher, and on PRW dataset our mAP and top-1 on PVANet are 8.0% and 5.0% higher compared with the state-of-the-art methods. Specially, the improvements can be more impressive in the case of large gallery, occlusion and low resolution." @default.
- W2890820198 created "2018-09-27" @default.
- W2890820198 creator A5011165591 @default.
- W2890820198 creator A5056706680 @default.
- W2890820198 creator A5057015645 @default.
- W2890820198 creator A5060019033 @default.
- W2890820198 date "2018-01-01" @default.
- W2890820198 modified "2023-09-25" @default.
- W2890820198 title "Partially Separated Networks for Person Search" @default.
- W2890820198 cites W1536680647 @default.
- W2890820198 cites W1927348918 @default.
- W2890820198 cites W1928419358 @default.
- W2890820198 cites W1949591461 @default.
- W2890820198 cites W1971955426 @default.
- W2890820198 cites W1982925187 @default.
- W2890820198 cites W2046835352 @default.
- W2890820198 cites W2102605133 @default.
- W2890820198 cites W2109255472 @default.
- W2890820198 cites W2125556102 @default.
- W2890820198 cites W2147736645 @default.
- W2890820198 cites W2159386181 @default.
- W2890820198 cites W2183182206 @default.
- W2890820198 cites W2194775991 @default.
- W2890820198 cites W2204750386 @default.
- W2890820198 cites W2475284720 @default.
- W2890820198 cites W2478068293 @default.
- W2890820198 cites W2497039038 @default.
- W2890820198 cites W2502225121 @default.
- W2890820198 cites W2606377603 @default.
- W2890820198 cites W2736410039 @default.
- W2890820198 cites W2962992847 @default.
- W2890820198 cites W2963574614 @default.
- W2890820198 cites W2963787027 @default.
- W2890820198 cites W2963901085 @default.
- W2890820198 cites W2964130064 @default.
- W2890820198 cites W3106250896 @default.
- W2890820198 cites W345900524 @default.
- W2890820198 doi "https://doi.org/10.1007/978-3-030-00764-5_71" @default.
- W2890820198 hasPublicationYear "2018" @default.
- W2890820198 type Work @default.
- W2890820198 sameAs 2890820198 @default.
- W2890820198 citedByCount "0" @default.
- W2890820198 crossrefType "book-chapter" @default.
- W2890820198 hasAuthorship W2890820198A5011165591 @default.
- W2890820198 hasAuthorship W2890820198A5056706680 @default.
- W2890820198 hasAuthorship W2890820198A5057015645 @default.
- W2890820198 hasAuthorship W2890820198A5060019033 @default.
- W2890820198 hasConcept C116834253 @default.
- W2890820198 hasConcept C119857082 @default.
- W2890820198 hasConcept C124101348 @default.
- W2890820198 hasConcept C127313418 @default.
- W2890820198 hasConcept C127413603 @default.
- W2890820198 hasConcept C138885662 @default.
- W2890820198 hasConcept C153180895 @default.
- W2890820198 hasConcept C154945302 @default.
- W2890820198 hasConcept C162324750 @default.
- W2890820198 hasConcept C170154142 @default.
- W2890820198 hasConcept C18555067 @default.
- W2890820198 hasConcept C187736073 @default.
- W2890820198 hasConcept C22212356 @default.
- W2890820198 hasConcept C2776401178 @default.
- W2890820198 hasConcept C2777113093 @default.
- W2890820198 hasConcept C2780156472 @default.
- W2890820198 hasConcept C2780451532 @default.
- W2890820198 hasConcept C3019883945 @default.
- W2890820198 hasConcept C3020199158 @default.
- W2890820198 hasConcept C31258907 @default.
- W2890820198 hasConcept C41008148 @default.
- W2890820198 hasConcept C41895202 @default.
- W2890820198 hasConcept C59822182 @default.
- W2890820198 hasConcept C62649853 @default.
- W2890820198 hasConcept C86803240 @default.
- W2890820198 hasConcept C88796919 @default.
- W2890820198 hasConceptScore W2890820198C116834253 @default.
- W2890820198 hasConceptScore W2890820198C119857082 @default.
- W2890820198 hasConceptScore W2890820198C124101348 @default.
- W2890820198 hasConceptScore W2890820198C127313418 @default.
- W2890820198 hasConceptScore W2890820198C127413603 @default.
- W2890820198 hasConceptScore W2890820198C138885662 @default.
- W2890820198 hasConceptScore W2890820198C153180895 @default.
- W2890820198 hasConceptScore W2890820198C154945302 @default.
- W2890820198 hasConceptScore W2890820198C162324750 @default.
- W2890820198 hasConceptScore W2890820198C170154142 @default.
- W2890820198 hasConceptScore W2890820198C18555067 @default.
- W2890820198 hasConceptScore W2890820198C187736073 @default.
- W2890820198 hasConceptScore W2890820198C22212356 @default.
- W2890820198 hasConceptScore W2890820198C2776401178 @default.
- W2890820198 hasConceptScore W2890820198C2777113093 @default.
- W2890820198 hasConceptScore W2890820198C2780156472 @default.
- W2890820198 hasConceptScore W2890820198C2780451532 @default.
- W2890820198 hasConceptScore W2890820198C3019883945 @default.
- W2890820198 hasConceptScore W2890820198C3020199158 @default.
- W2890820198 hasConceptScore W2890820198C31258907 @default.
- W2890820198 hasConceptScore W2890820198C41008148 @default.
- W2890820198 hasConceptScore W2890820198C41895202 @default.
- W2890820198 hasConceptScore W2890820198C59822182 @default.
- W2890820198 hasConceptScore W2890820198C62649853 @default.
- W2890820198 hasConceptScore W2890820198C86803240 @default.