Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890828616> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2890828616 abstract "Advances in biotechnologies rapidly increase the number of molecules of a cell which can be observed simultaneously. This includes expression levels of thousands or ten-thousands of genes as well as concentration levels of metabolites or proteins. Such Profile data, observed at different times or at different experimental conditions (e.g., heat or dry stress), show how the biological experiment is reflected on the molecular level. This information is helpful to understand the molecular behaviour and to identify molecules or combination of molecules that characterise specific biological condition (e.g., disease). This work shows the potentials of component extraction algorithms to identify the major factors which influenced the observed data. This can be the expected experimental factors such as the time or temperature as well as unexpected factors such as technical artefacts or even unknown biological behaviour. Extracting components means to reduce the very high-dimensional data to a small set of new variables termed components. Each component is a combination of all original variables. The classical approach for that purpose is the principal component analysis (PCA). It is shown that, in contrast to PCA which maximises the variance only, modern approaches such as independent component analysis (ICA) are more suitable for analysing molecular data. The condition of independence between components of ICA fits more naturally our assumption of individual (independent) factors which influence the data. This higher potential of ICA is demonstrated by a crossing experiment of the model plant Arabidopsis thaliana (Thale Cress). The experimental factors could be well identified and, in addition, ICA could even detect a technical artefact. However, in continuously observations such as in time experiments, the data show, in general, a nonlinear distribution. To analyse such nonlinear data, a nonlinear extension of PCA is used. This nonlinear PCA (NLPCA) is based on a neural network algorithm. The algorithm is adapted to be applicable to incomplete molecular data sets. Thus, it provides also the ability to estimate the missing data. The potential of nonlinear PCA to identify nonlinear factors is demonstrated by a cold stress experiment of Arabidopsis thaliana. The results of component analysis can be used to build a molecular network model. Since it includes functional dependencies it is termed functional network. Applied to the cold stress data, it is shown that functional networks are appropriate to visualise biological processes and thereby reveals molecular dynamics." @default.
- W2890828616 created "2018-09-27" @default.
- W2890828616 creator A5005465280 @default.
- W2890828616 date "2006-01-01" @default.
- W2890828616 modified "2023-09-27" @default.
- W2890828616 title "Approaches to analyse and interpret biological profile data" @default.
- W2890828616 hasPublicationYear "2006" @default.
- W2890828616 type Work @default.
- W2890828616 sameAs 2890828616 @default.
- W2890828616 citedByCount "7" @default.
- W2890828616 countsByYear W28908286162012 @default.
- W2890828616 countsByYear W28908286162013 @default.
- W2890828616 countsByYear W28908286162014 @default.
- W2890828616 countsByYear W28908286162019 @default.
- W2890828616 crossrefType "journal-article" @default.
- W2890828616 hasAuthorship W2890828616A5005465280 @default.
- W2890828616 hasConcept C105795698 @default.
- W2890828616 hasConcept C121332964 @default.
- W2890828616 hasConcept C121955636 @default.
- W2890828616 hasConcept C124101348 @default.
- W2890828616 hasConcept C144133560 @default.
- W2890828616 hasConcept C153180895 @default.
- W2890828616 hasConcept C154945302 @default.
- W2890828616 hasConcept C168167062 @default.
- W2890828616 hasConcept C177264268 @default.
- W2890828616 hasConcept C186060115 @default.
- W2890828616 hasConcept C196083921 @default.
- W2890828616 hasConcept C199360897 @default.
- W2890828616 hasConcept C27438332 @default.
- W2890828616 hasConcept C33923547 @default.
- W2890828616 hasConcept C35651441 @default.
- W2890828616 hasConcept C41008148 @default.
- W2890828616 hasConcept C51432778 @default.
- W2890828616 hasConcept C58489278 @default.
- W2890828616 hasConcept C86803240 @default.
- W2890828616 hasConcept C97355855 @default.
- W2890828616 hasConceptScore W2890828616C105795698 @default.
- W2890828616 hasConceptScore W2890828616C121332964 @default.
- W2890828616 hasConceptScore W2890828616C121955636 @default.
- W2890828616 hasConceptScore W2890828616C124101348 @default.
- W2890828616 hasConceptScore W2890828616C144133560 @default.
- W2890828616 hasConceptScore W2890828616C153180895 @default.
- W2890828616 hasConceptScore W2890828616C154945302 @default.
- W2890828616 hasConceptScore W2890828616C168167062 @default.
- W2890828616 hasConceptScore W2890828616C177264268 @default.
- W2890828616 hasConceptScore W2890828616C186060115 @default.
- W2890828616 hasConceptScore W2890828616C196083921 @default.
- W2890828616 hasConceptScore W2890828616C199360897 @default.
- W2890828616 hasConceptScore W2890828616C27438332 @default.
- W2890828616 hasConceptScore W2890828616C33923547 @default.
- W2890828616 hasConceptScore W2890828616C35651441 @default.
- W2890828616 hasConceptScore W2890828616C41008148 @default.
- W2890828616 hasConceptScore W2890828616C51432778 @default.
- W2890828616 hasConceptScore W2890828616C58489278 @default.
- W2890828616 hasConceptScore W2890828616C86803240 @default.
- W2890828616 hasConceptScore W2890828616C97355855 @default.
- W2890828616 hasLocation W28908286161 @default.
- W2890828616 hasOpenAccess W2890828616 @default.
- W2890828616 hasPrimaryLocation W28908286161 @default.
- W2890828616 hasRelatedWork W1044083074 @default.
- W2890828616 hasRelatedWork W1574203583 @default.
- W2890828616 hasRelatedWork W1594082855 @default.
- W2890828616 hasRelatedWork W1628301302 @default.
- W2890828616 hasRelatedWork W1972228597 @default.
- W2890828616 hasRelatedWork W1973858913 @default.
- W2890828616 hasRelatedWork W1977968651 @default.
- W2890828616 hasRelatedWork W1993758448 @default.
- W2890828616 hasRelatedWork W2010877658 @default.
- W2890828616 hasRelatedWork W2012671406 @default.
- W2890828616 hasRelatedWork W2116339520 @default.
- W2890828616 hasRelatedWork W2122433375 @default.
- W2890828616 hasRelatedWork W2207519881 @default.
- W2890828616 hasRelatedWork W2341549310 @default.
- W2890828616 hasRelatedWork W2483299250 @default.
- W2890828616 hasRelatedWork W2546323938 @default.
- W2890828616 hasRelatedWork W2604124063 @default.
- W2890828616 hasRelatedWork W3121314468 @default.
- W2890828616 hasRelatedWork W3122508187 @default.
- W2890828616 hasRelatedWork W3174906611 @default.
- W2890828616 isParatext "false" @default.
- W2890828616 isRetracted "false" @default.
- W2890828616 magId "2890828616" @default.
- W2890828616 workType "article" @default.