Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890828651> ?p ?o ?g. }
- W2890828651 endingPage "748" @default.
- W2890828651 startingPage "739" @default.
- W2890828651 abstract "Weighted regression approach is one of the popular problems in robust regression analysis. Recently, robust fuzzy regression models have proven to be alternative approaches to fuzzy regression models attempting to identify, down-weight and/or ignore unusual points (outliers). This paper proposes a new robust fuzzy regression modeling technique known as weighted least squares (LS) fuzzy regression to construct a model for crisp input-fuzzy output data. We introduce a new weighted objective function to overcome the disadvantages of the ordinary LS approach in the presence of outliers. We derive and describe an iterative reweighted algorithm for minimization of the objective function. The algorithm is presented to approximate the weighted estimators of the fuzzy regression by solving the weighted optimization problem. The proposed algorithm decreases the affect of outliers on the model fit attempting to identify/down-weight them. To this end, experiments on datasets with different numbers of outliers are performed. The accuracy of our approach in a real setting is also tested on establishing a predictive model for evaluation of suspended load based on a real world dataset in hydrology engineering. The numerical results show that in the presence of unusual points the proposed weighted fit tracks the main body of the data considerably better than the ordinary LS fuzzy regression fit both in terms of the selected performance criteria and in terms of identifying and down weighting unusual data (outliers). The results of the numerical examples show that this approach has the capability to examine the behavior of value changes in the goodness-of-fit criteria of the fuzzy regression models when the downweighted observations are omitted." @default.
- W2890828651 created "2018-09-27" @default.
- W2890828651 creator A5066397268 @default.
- W2890828651 date "2019-04-01" @default.
- W2890828651 modified "2023-10-17" @default.
- W2890828651 title "A Weighted Least Squares Fuzzy Regression for Crisp Input-Fuzzy Output Data" @default.
- W2890828651 cites W1597275549 @default.
- W2890828651 cites W1965660845 @default.
- W2890828651 cites W1975582241 @default.
- W2890828651 cites W1976662149 @default.
- W2890828651 cites W2012856023 @default.
- W2890828651 cites W2023002872 @default.
- W2890828651 cites W2024937964 @default.
- W2890828651 cites W2029336792 @default.
- W2890828651 cites W2029446274 @default.
- W2890828651 cites W2034841618 @default.
- W2890828651 cites W2041874595 @default.
- W2890828651 cites W2043454859 @default.
- W2890828651 cites W2047567290 @default.
- W2890828651 cites W2048869133 @default.
- W2890828651 cites W2051364895 @default.
- W2890828651 cites W2057683820 @default.
- W2890828651 cites W2057820731 @default.
- W2890828651 cites W2070459079 @default.
- W2890828651 cites W2085007002 @default.
- W2890828651 cites W2093664168 @default.
- W2890828651 cites W2096768134 @default.
- W2890828651 cites W2260530822 @default.
- W2890828651 cites W2283215762 @default.
- W2890828651 cites W2418042223 @default.
- W2890828651 cites W2498631646 @default.
- W2890828651 cites W2509955447 @default.
- W2890828651 cites W2518225643 @default.
- W2890828651 cites W2527531442 @default.
- W2890828651 cites W2565517508 @default.
- W2890828651 cites W2586885364 @default.
- W2890828651 cites W2598167488 @default.
- W2890828651 cites W2737409458 @default.
- W2890828651 cites W2751461297 @default.
- W2890828651 cites W2788926006 @default.
- W2890828651 cites W2807332518 @default.
- W2890828651 cites W4205806204 @default.
- W2890828651 cites W4211007335 @default.
- W2890828651 doi "https://doi.org/10.1109/tfuzz.2018.2868554" @default.
- W2890828651 hasPublicationYear "2019" @default.
- W2890828651 type Work @default.
- W2890828651 sameAs 2890828651 @default.
- W2890828651 citedByCount "22" @default.
- W2890828651 countsByYear W28908286512019 @default.
- W2890828651 countsByYear W28908286512020 @default.
- W2890828651 countsByYear W28908286512021 @default.
- W2890828651 countsByYear W28908286512022 @default.
- W2890828651 countsByYear W28908286512023 @default.
- W2890828651 crossrefType "journal-article" @default.
- W2890828651 hasAuthorship W2890828651A5066397268 @default.
- W2890828651 hasConcept C105795698 @default.
- W2890828651 hasConcept C11413529 @default.
- W2890828651 hasConcept C124101348 @default.
- W2890828651 hasConcept C126255220 @default.
- W2890828651 hasConcept C126838900 @default.
- W2890828651 hasConcept C152877465 @default.
- W2890828651 hasConcept C154945302 @default.
- W2890828651 hasConcept C183115368 @default.
- W2890828651 hasConcept C33923547 @default.
- W2890828651 hasConcept C41008148 @default.
- W2890828651 hasConcept C58166 @default.
- W2890828651 hasConcept C70259352 @default.
- W2890828651 hasConcept C71924100 @default.
- W2890828651 hasConcept C79337645 @default.
- W2890828651 hasConceptScore W2890828651C105795698 @default.
- W2890828651 hasConceptScore W2890828651C11413529 @default.
- W2890828651 hasConceptScore W2890828651C124101348 @default.
- W2890828651 hasConceptScore W2890828651C126255220 @default.
- W2890828651 hasConceptScore W2890828651C126838900 @default.
- W2890828651 hasConceptScore W2890828651C152877465 @default.
- W2890828651 hasConceptScore W2890828651C154945302 @default.
- W2890828651 hasConceptScore W2890828651C183115368 @default.
- W2890828651 hasConceptScore W2890828651C33923547 @default.
- W2890828651 hasConceptScore W2890828651C41008148 @default.
- W2890828651 hasConceptScore W2890828651C58166 @default.
- W2890828651 hasConceptScore W2890828651C70259352 @default.
- W2890828651 hasConceptScore W2890828651C71924100 @default.
- W2890828651 hasConceptScore W2890828651C79337645 @default.
- W2890828651 hasIssue "4" @default.
- W2890828651 hasLocation W28908286511 @default.
- W2890828651 hasOpenAccess W2890828651 @default.
- W2890828651 hasPrimaryLocation W28908286511 @default.
- W2890828651 hasRelatedWork W2018697919 @default.
- W2890828651 hasRelatedWork W2019781913 @default.
- W2890828651 hasRelatedWork W2144348065 @default.
- W2890828651 hasRelatedWork W2325374573 @default.
- W2890828651 hasRelatedWork W2389405690 @default.
- W2890828651 hasRelatedWork W2890154267 @default.
- W2890828651 hasRelatedWork W3007347008 @default.
- W2890828651 hasRelatedWork W3085012421 @default.
- W2890828651 hasRelatedWork W4249094282 @default.
- W2890828651 hasRelatedWork W1947414961 @default.
- W2890828651 hasVolume "27" @default.