Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890838230> ?p ?o ?g. }
- W2890838230 endingPage "471" @default.
- W2890838230 startingPage "450" @default.
- W2890838230 abstract "Intelligent fault diagnosis of rotating machinery is essentially a pattern recognition problem. Meanwhile, effective feature extraction from the raw vibration signal is an important procedure for timely detection of mechanical health status and the assessment of fault recognition results. Therefore, to efficiently extract fault feature information and improve fault diagnosis accuracy, a novel fault diagnosis technique based on improved multiscale dispersion entropy (IMDE) and max-relevance min-redundancy (mRMR) is proposed in this paper. Firstly, the IMDE method is developed to capture multi-scale fault features from the collected original vibration signal, which can overcome the deficiencies of traditional multiscale entropy and improve the stability of the recently presented multiscale dispersion entropy (MDE). Then, the mRMR algorithm is utilized to select automatically the sensitive features from the candidate multi-scale features without any prior knowledge. Finally, the sensitive feature vector set after normalization treatment is inputted into the extreme learning machine (ELM) classifier to train the intelligent diagnosis model and provide fault diagnosis results. The validity of our proposed method is assessed through two experimental examples. The experimental results show that our proposed method works efficiently for identification of different fault conditions of mechanical components including rolling bearing and gearbox. Moreover, our proposed method gives better diagnosis results as compared to some existing approaches (e.g. MSE and MPE) when being utilized for fault condition classification. This research provides a new perspective for fault information extraction and fault classification of rotating machinery." @default.
- W2890838230 created "2018-09-27" @default.
- W2890838230 creator A5029522441 @default.
- W2890838230 creator A5029523480 @default.
- W2890838230 date "2019-01-01" @default.
- W2890838230 modified "2023-10-14" @default.
- W2890838230 title "Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection" @default.
- W2890838230 cites W1512161016 @default.
- W2890838230 cites W1850407572 @default.
- W2890838230 cites W1862394037 @default.
- W2890838230 cites W1966634360 @default.
- W2890838230 cites W1967352108 @default.
- W2890838230 cites W1967396805 @default.
- W2890838230 cites W1971219721 @default.
- W2890838230 cites W1974330875 @default.
- W2890838230 cites W1978959816 @default.
- W2890838230 cites W2013719875 @default.
- W2890838230 cites W2014683958 @default.
- W2890838230 cites W2015605478 @default.
- W2890838230 cites W2028702910 @default.
- W2890838230 cites W2043020486 @default.
- W2890838230 cites W2047525231 @default.
- W2890838230 cites W2057577134 @default.
- W2890838230 cites W2057710539 @default.
- W2890838230 cites W2059851411 @default.
- W2890838230 cites W2060540122 @default.
- W2890838230 cites W2066980082 @default.
- W2890838230 cites W2078365611 @default.
- W2890838230 cites W2078731979 @default.
- W2890838230 cites W2083520984 @default.
- W2890838230 cites W2086315826 @default.
- W2890838230 cites W2091391445 @default.
- W2890838230 cites W2093266575 @default.
- W2890838230 cites W2111072639 @default.
- W2890838230 cites W2115138750 @default.
- W2890838230 cites W2154053567 @default.
- W2890838230 cites W2157881370 @default.
- W2890838230 cites W2189002369 @default.
- W2890838230 cites W2195063230 @default.
- W2890838230 cites W2275614980 @default.
- W2890838230 cites W2333775360 @default.
- W2890838230 cites W2405830411 @default.
- W2890838230 cites W2523408358 @default.
- W2890838230 cites W2539863713 @default.
- W2890838230 cites W2546427370 @default.
- W2890838230 cites W2582662555 @default.
- W2890838230 cites W2610099500 @default.
- W2890838230 cites W2755755232 @default.
- W2890838230 cites W2765226309 @default.
- W2890838230 cites W2788741349 @default.
- W2890838230 cites W406261734 @default.
- W2890838230 cites W937050127 @default.
- W2890838230 doi "https://doi.org/10.1016/j.knosys.2018.09.004" @default.
- W2890838230 hasPublicationYear "2019" @default.
- W2890838230 type Work @default.
- W2890838230 sameAs 2890838230 @default.
- W2890838230 citedByCount "164" @default.
- W2890838230 countsByYear W28908382302019 @default.
- W2890838230 countsByYear W28908382302020 @default.
- W2890838230 countsByYear W28908382302021 @default.
- W2890838230 countsByYear W28908382302022 @default.
- W2890838230 countsByYear W28908382302023 @default.
- W2890838230 crossrefType "journal-article" @default.
- W2890838230 hasAuthorship W2890838230A5029522441 @default.
- W2890838230 hasAuthorship W2890838230A5029523480 @default.
- W2890838230 hasConcept C106301342 @default.
- W2890838230 hasConcept C119857082 @default.
- W2890838230 hasConcept C121332964 @default.
- W2890838230 hasConcept C12267149 @default.
- W2890838230 hasConcept C124101348 @default.
- W2890838230 hasConcept C127313418 @default.
- W2890838230 hasConcept C148483581 @default.
- W2890838230 hasConcept C153180895 @default.
- W2890838230 hasConcept C154945302 @default.
- W2890838230 hasConcept C165205528 @default.
- W2890838230 hasConcept C175551986 @default.
- W2890838230 hasConcept C2780150128 @default.
- W2890838230 hasConcept C41008148 @default.
- W2890838230 hasConcept C50644808 @default.
- W2890838230 hasConcept C52001869 @default.
- W2890838230 hasConcept C52622490 @default.
- W2890838230 hasConcept C62520636 @default.
- W2890838230 hasConcept C95623464 @default.
- W2890838230 hasConceptScore W2890838230C106301342 @default.
- W2890838230 hasConceptScore W2890838230C119857082 @default.
- W2890838230 hasConceptScore W2890838230C121332964 @default.
- W2890838230 hasConceptScore W2890838230C12267149 @default.
- W2890838230 hasConceptScore W2890838230C124101348 @default.
- W2890838230 hasConceptScore W2890838230C127313418 @default.
- W2890838230 hasConceptScore W2890838230C148483581 @default.
- W2890838230 hasConceptScore W2890838230C153180895 @default.
- W2890838230 hasConceptScore W2890838230C154945302 @default.
- W2890838230 hasConceptScore W2890838230C165205528 @default.
- W2890838230 hasConceptScore W2890838230C175551986 @default.
- W2890838230 hasConceptScore W2890838230C2780150128 @default.
- W2890838230 hasConceptScore W2890838230C41008148 @default.
- W2890838230 hasConceptScore W2890838230C50644808 @default.
- W2890838230 hasConceptScore W2890838230C52001869 @default.