Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890839613> ?p ?o ?g. }
- W2890839613 endingPage "1471" @default.
- W2890839613 startingPage "1471" @default.
- W2890839613 abstract "This work aims to model and relate the urban density and land surface temperature (LST) by a straightforward and efficient approach. Although the urban density-LST relation is widely addressed in literature, this study allows for its modeling and parameterization in an accurate way, providing a further scientific support for the city planning policy. The urban density and the LST analysis is carried out in the Bangkok area for the years 2004, 2008, 2012, and 2016; in this time interval, the city exhibited an evident urban expansion. Firstly, by using land cover maps obtained from Landsat reflective observations, the urban land density growth across the years studied is evaluated by applying a ring-based approach, a method employed in urban theory, providing urban density curves as a function of the distance from the city center. For each year, the urban density curve is well modeled by an inverse S-shape function, the parameters of which highlight an urban sprawl over the years studied and an outskirt growth in recent years. Then, employing 237 MODIS LST images, the night-time and daytime mean LST patterns for each year were processed applying the same ring-based analysis, obtaining LST trends versus distance. Albeit the mean LST decreases away from the city core, the daytime and night-time trends are different in both shape and values. The daytime LST exhibits a trend also modeled by an inverse S-shape function, whereas the night-time one is modeled by a quadratic function. Finally, the urban density-LST relationship is inferred across the years: For daytime, the relation is quadratic with a coefficient of determination r2 around 0.98–0.99, whereas for night-time the relation is linear with r2 of the order of 0.95–0.96. The proposed approach allows for reliable modeling and to straightforwardly infer a very accurate urban density-LST relationship." @default.
- W2890839613 created "2018-09-27" @default.
- W2890839613 creator A5016621601 @default.
- W2890839613 creator A5035126116 @default.
- W2890839613 date "2018-09-14" @default.
- W2890839613 modified "2023-10-01" @default.
- W2890839613 title "Land Surface Temperature and Urban Density: Multiyear Modeling and Relationship Analysis Using MODIS and Landsat Data" @default.
- W2890839613 cites W1545285228 @default.
- W2890839613 cites W1622515456 @default.
- W2890839613 cites W1968230733 @default.
- W2890839613 cites W1978638151 @default.
- W2890839613 cites W1979170814 @default.
- W2890839613 cites W1988676081 @default.
- W2890839613 cites W1996495362 @default.
- W2890839613 cites W2006273284 @default.
- W2890839613 cites W2008645757 @default.
- W2890839613 cites W2029660080 @default.
- W2890839613 cites W2069052711 @default.
- W2890839613 cites W2114785501 @default.
- W2890839613 cites W2151945899 @default.
- W2890839613 cites W2162063693 @default.
- W2890839613 cites W2174085703 @default.
- W2890839613 cites W2269993870 @default.
- W2890839613 cites W2296729900 @default.
- W2890839613 cites W2302273879 @default.
- W2890839613 cites W2471641792 @default.
- W2890839613 cites W2507378931 @default.
- W2890839613 cites W2552567353 @default.
- W2890839613 cites W2554470513 @default.
- W2890839613 cites W2583621715 @default.
- W2890839613 cites W2589306140 @default.
- W2890839613 cites W2593122969 @default.
- W2890839613 cites W2604684858 @default.
- W2890839613 cites W2613172796 @default.
- W2890839613 cites W2623721068 @default.
- W2890839613 cites W2730089161 @default.
- W2890839613 cites W2735755726 @default.
- W2890839613 cites W2755013453 @default.
- W2890839613 cites W2790576908 @default.
- W2890839613 cites W2794103215 @default.
- W2890839613 cites W2802728745 @default.
- W2890839613 cites W2802786249 @default.
- W2890839613 doi "https://doi.org/10.3390/rs10091471" @default.
- W2890839613 hasPublicationYear "2018" @default.
- W2890839613 type Work @default.
- W2890839613 sameAs 2890839613 @default.
- W2890839613 citedByCount "37" @default.
- W2890839613 countsByYear W28908396132018 @default.
- W2890839613 countsByYear W28908396132019 @default.
- W2890839613 countsByYear W28908396132020 @default.
- W2890839613 countsByYear W28908396132021 @default.
- W2890839613 countsByYear W28908396132022 @default.
- W2890839613 countsByYear W28908396132023 @default.
- W2890839613 crossrefType "journal-article" @default.
- W2890839613 hasAuthorship W2890839613A5016621601 @default.
- W2890839613 hasAuthorship W2890839613A5035126116 @default.
- W2890839613 hasBestOaLocation W28908396131 @default.
- W2890839613 hasConcept C100970517 @default.
- W2890839613 hasConcept C105795698 @default.
- W2890839613 hasConcept C127313418 @default.
- W2890839613 hasConcept C127413603 @default.
- W2890839613 hasConcept C129844170 @default.
- W2890839613 hasConcept C136264566 @default.
- W2890839613 hasConcept C147176958 @default.
- W2890839613 hasConcept C153294291 @default.
- W2890839613 hasConcept C158049464 @default.
- W2890839613 hasConcept C162324750 @default.
- W2890839613 hasConcept C162725370 @default.
- W2890839613 hasConcept C166437778 @default.
- W2890839613 hasConcept C18903297 @default.
- W2890839613 hasConcept C197055811 @default.
- W2890839613 hasConcept C205649164 @default.
- W2890839613 hasConcept C2524010 @default.
- W2890839613 hasConcept C2778368647 @default.
- W2890839613 hasConcept C2780648208 @default.
- W2890839613 hasConcept C33923547 @default.
- W2890839613 hasConcept C39432304 @default.
- W2890839613 hasConcept C4238864 @default.
- W2890839613 hasConcept C4792198 @default.
- W2890839613 hasConcept C487182 @default.
- W2890839613 hasConcept C49545453 @default.
- W2890839613 hasConcept C62649853 @default.
- W2890839613 hasConcept C86803240 @default.
- W2890839613 hasConcept C91586092 @default.
- W2890839613 hasConceptScore W2890839613C100970517 @default.
- W2890839613 hasConceptScore W2890839613C105795698 @default.
- W2890839613 hasConceptScore W2890839613C127313418 @default.
- W2890839613 hasConceptScore W2890839613C127413603 @default.
- W2890839613 hasConceptScore W2890839613C129844170 @default.
- W2890839613 hasConceptScore W2890839613C136264566 @default.
- W2890839613 hasConceptScore W2890839613C147176958 @default.
- W2890839613 hasConceptScore W2890839613C153294291 @default.
- W2890839613 hasConceptScore W2890839613C158049464 @default.
- W2890839613 hasConceptScore W2890839613C162324750 @default.
- W2890839613 hasConceptScore W2890839613C162725370 @default.
- W2890839613 hasConceptScore W2890839613C166437778 @default.
- W2890839613 hasConceptScore W2890839613C18903297 @default.
- W2890839613 hasConceptScore W2890839613C197055811 @default.