Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890840903> ?p ?o ?g. }
- W2890840903 endingPage "804" @default.
- W2890840903 startingPage "796" @default.
- W2890840903 abstract "Urologists regularly develop clinical risk prediction models to support clinical decisions. In contrast to traditional performance measures, decision curve analysis (DCA) can assess the utility of models for decision making. DCA plots net benefit (NB) at a range of clinically reasonable risk thresholds. To provide recommendations on interpreting and reporting DCA when evaluating prediction models. We informally reviewed the urological literature to determine investigators’ understanding of DCA. To illustrate, we use data from 3616 patients to develop risk models for high-grade prostate cancer (n = 313, 9%) to decide who should undergo a biopsy. The baseline model includes prostate-specific antigen and digital rectal examination; the extended model adds two predictors based on transrectal ultrasound (TRUS). We explain risk thresholds, NB, default strategies (treat all, treat no one), and test tradeoff. To use DCA, first determine whether a model is superior to all other strategies across the range of reasonable risk thresholds. If so, that model appears to improve decisions irrespective of threshold. Second, consider if there are important extra costs to using the model. If so, obtain the test tradeoff to check whether the increase in NB versus the best other strategy is worth the additional cost. In our case study, addition of TRUS improved NB by 0.0114, equivalent to 1.1 more detected high-grade prostate cancers per 100 patients. Hence, adding TRUS would be worthwhile if we accept subjecting 88 patients to TRUS to find one additional high-grade prostate cancer or, alternatively, subjecting 10 patients to TRUS to avoid one unnecessary biopsy. The proposed guidelines can help researchers understand DCA and improve application and reporting. Decision curve analysis can identify risk models that can help us make better clinical decisions. We illustrate appropriate reporting and interpretation of decision curve analysis." @default.
- W2890840903 created "2018-09-27" @default.
- W2890840903 creator A5027201749 @default.
- W2890840903 creator A5039867286 @default.
- W2890840903 creator A5041689980 @default.
- W2890840903 creator A5052299820 @default.
- W2890840903 creator A5058597472 @default.
- W2890840903 creator A5069906805 @default.
- W2890840903 creator A5086320066 @default.
- W2890840903 creator A5091435927 @default.
- W2890840903 date "2018-12-01" @default.
- W2890840903 modified "2023-10-18" @default.
- W2890840903 title "Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators" @default.
- W2890840903 cites W1994682257 @default.
- W2890840903 cites W1998817878 @default.
- W2890840903 cites W2003136392 @default.
- W2890840903 cites W2016639151 @default.
- W2890840903 cites W2023732110 @default.
- W2890840903 cites W2024583141 @default.
- W2890840903 cites W2026838241 @default.
- W2890840903 cites W2026901643 @default.
- W2890840903 cites W2041256948 @default.
- W2890840903 cites W2045030989 @default.
- W2890840903 cites W2054193584 @default.
- W2890840903 cites W2070808305 @default.
- W2890840903 cites W2071197092 @default.
- W2890840903 cites W2071727133 @default.
- W2890840903 cites W2106421416 @default.
- W2890840903 cites W2117352205 @default.
- W2890840903 cites W2119910794 @default.
- W2890840903 cites W2120357482 @default.
- W2890840903 cites W2130383679 @default.
- W2890840903 cites W2153505392 @default.
- W2890840903 cites W2154009746 @default.
- W2890840903 cites W2160358748 @default.
- W2890840903 cites W2161506768 @default.
- W2890840903 cites W2171448541 @default.
- W2890840903 cites W2225109326 @default.
- W2890840903 cites W2226880313 @default.
- W2890840903 cites W2322019968 @default.
- W2890840903 cites W2326746642 @default.
- W2890840903 cites W2341689870 @default.
- W2890840903 cites W2417116130 @default.
- W2890840903 cites W2511949746 @default.
- W2890840903 cites W2604294081 @default.
- W2890840903 cites W2607509581 @default.
- W2890840903 cites W2754886434 @default.
- W2890840903 doi "https://doi.org/10.1016/j.eururo.2018.08.038" @default.
- W2890840903 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6261531" @default.
- W2890840903 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30241973" @default.
- W2890840903 hasPublicationYear "2018" @default.
- W2890840903 type Work @default.
- W2890840903 sameAs 2890840903 @default.
- W2890840903 citedByCount "479" @default.
- W2890840903 countsByYear W28908409032019 @default.
- W2890840903 countsByYear W28908409032020 @default.
- W2890840903 countsByYear W28908409032021 @default.
- W2890840903 countsByYear W28908409032022 @default.
- W2890840903 countsByYear W28908409032023 @default.
- W2890840903 crossrefType "journal-article" @default.
- W2890840903 hasAuthorship W2890840903A5027201749 @default.
- W2890840903 hasAuthorship W2890840903A5039867286 @default.
- W2890840903 hasAuthorship W2890840903A5041689980 @default.
- W2890840903 hasAuthorship W2890840903A5052299820 @default.
- W2890840903 hasAuthorship W2890840903A5058597472 @default.
- W2890840903 hasAuthorship W2890840903A5069906805 @default.
- W2890840903 hasAuthorship W2890840903A5086320066 @default.
- W2890840903 hasAuthorship W2890840903A5091435927 @default.
- W2890840903 hasBestOaLocation W28908409032 @default.
- W2890840903 hasConcept C121608353 @default.
- W2890840903 hasConcept C12174686 @default.
- W2890840903 hasConcept C126322002 @default.
- W2890840903 hasConcept C142724271 @default.
- W2890840903 hasConcept C19527891 @default.
- W2890840903 hasConcept C204787440 @default.
- W2890840903 hasConcept C2776235491 @default.
- W2890840903 hasConcept C2780033181 @default.
- W2890840903 hasConcept C2780101318 @default.
- W2890840903 hasConcept C2780192828 @default.
- W2890840903 hasConcept C38652104 @default.
- W2890840903 hasConcept C41008148 @default.
- W2890840903 hasConcept C58471807 @default.
- W2890840903 hasConcept C71924100 @default.
- W2890840903 hasConceptScore W2890840903C121608353 @default.
- W2890840903 hasConceptScore W2890840903C12174686 @default.
- W2890840903 hasConceptScore W2890840903C126322002 @default.
- W2890840903 hasConceptScore W2890840903C142724271 @default.
- W2890840903 hasConceptScore W2890840903C19527891 @default.
- W2890840903 hasConceptScore W2890840903C204787440 @default.
- W2890840903 hasConceptScore W2890840903C2776235491 @default.
- W2890840903 hasConceptScore W2890840903C2780033181 @default.
- W2890840903 hasConceptScore W2890840903C2780101318 @default.
- W2890840903 hasConceptScore W2890840903C2780192828 @default.
- W2890840903 hasConceptScore W2890840903C38652104 @default.
- W2890840903 hasConceptScore W2890840903C41008148 @default.
- W2890840903 hasConceptScore W2890840903C58471807 @default.
- W2890840903 hasConceptScore W2890840903C71924100 @default.
- W2890840903 hasIssue "6" @default.