Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890858445> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2890858445 endingPage "111" @default.
- W2890858445 startingPage "103" @default.
- W2890858445 abstract "In this study, we aim to predict emotional intelligence scores from functional connectivity data acquired at different timepoints. To enhance the generalizability of the proposed predictive model to new data and accurate identification of most relevant neural correlates with different facets of the human intelligence, we propose a joint support vector machine and support vector regression (SVM+SVR) model. Specifically, we first identify most discriminative connections between subjects with high vs low emotional intelligence scores in the SVM step and then perform a multi-variate linear regression using these connections to predict the target emotional intelligence score in the SVR step. Our method outperformed existing methods including the Connectome-based Predictive Model (CPM) using functional connectivity data simultaneously acquired with the intelligence scores. The most predictive connections of intelligence included brain regions involved in processing of emotions and social behaviour." @default.
- W2890858445 created "2018-09-27" @default.
- W2890858445 creator A5048784346 @default.
- W2890858445 creator A5075357615 @default.
- W2890858445 date "2018-01-01" @default.
- W2890858445 modified "2023-09-23" @default.
- W2890858445 title "Predicting Emotional Intelligence Scores from Multi-session Functional Brain Connectomes" @default.
- W2890858445 cites W1972301753 @default.
- W2890858445 cites W2024892001 @default.
- W2890858445 cites W2038578712 @default.
- W2890858445 cites W2043491666 @default.
- W2890858445 cites W2048992605 @default.
- W2890858445 cites W2059631807 @default.
- W2890858445 cites W2063404606 @default.
- W2890858445 cites W2103904086 @default.
- W2890858445 cites W2131181615 @default.
- W2890858445 cites W2132135247 @default.
- W2890858445 cites W2171265092 @default.
- W2890858445 cites W2587272693 @default.
- W2890858445 cites W2588608138 @default.
- W2890858445 cites W2794107469 @default.
- W2890858445 cites W2802202883 @default.
- W2890858445 cites W4211075179 @default.
- W2890858445 cites W4211091012 @default.
- W2890858445 doi "https://doi.org/10.1007/978-3-030-00320-3_13" @default.
- W2890858445 hasPublicationYear "2018" @default.
- W2890858445 type Work @default.
- W2890858445 sameAs 2890858445 @default.
- W2890858445 citedByCount "2" @default.
- W2890858445 countsByYear W28908584452019 @default.
- W2890858445 countsByYear W28908584452023 @default.
- W2890858445 crossrefType "book-chapter" @default.
- W2890858445 hasAuthorship W2890858445A5048784346 @default.
- W2890858445 hasAuthorship W2890858445A5075357615 @default.
- W2890858445 hasBestOaLocation W28908584452 @default.
- W2890858445 hasConcept C11171543 @default.
- W2890858445 hasConcept C119857082 @default.
- W2890858445 hasConcept C12267149 @default.
- W2890858445 hasConcept C138496976 @default.
- W2890858445 hasConcept C153180895 @default.
- W2890858445 hasConcept C154945302 @default.
- W2890858445 hasConcept C15744967 @default.
- W2890858445 hasConcept C169760540 @default.
- W2890858445 hasConcept C27158222 @default.
- W2890858445 hasConcept C3018011982 @default.
- W2890858445 hasConcept C41008148 @default.
- W2890858445 hasConcept C45715564 @default.
- W2890858445 hasConcept C50644808 @default.
- W2890858445 hasConcept C83546350 @default.
- W2890858445 hasConcept C97931131 @default.
- W2890858445 hasConceptScore W2890858445C11171543 @default.
- W2890858445 hasConceptScore W2890858445C119857082 @default.
- W2890858445 hasConceptScore W2890858445C12267149 @default.
- W2890858445 hasConceptScore W2890858445C138496976 @default.
- W2890858445 hasConceptScore W2890858445C153180895 @default.
- W2890858445 hasConceptScore W2890858445C154945302 @default.
- W2890858445 hasConceptScore W2890858445C15744967 @default.
- W2890858445 hasConceptScore W2890858445C169760540 @default.
- W2890858445 hasConceptScore W2890858445C27158222 @default.
- W2890858445 hasConceptScore W2890858445C3018011982 @default.
- W2890858445 hasConceptScore W2890858445C41008148 @default.
- W2890858445 hasConceptScore W2890858445C45715564 @default.
- W2890858445 hasConceptScore W2890858445C50644808 @default.
- W2890858445 hasConceptScore W2890858445C83546350 @default.
- W2890858445 hasConceptScore W2890858445C97931131 @default.
- W2890858445 hasLocation W28908584451 @default.
- W2890858445 hasLocation W28908584452 @default.
- W2890858445 hasLocation W28908584453 @default.
- W2890858445 hasOpenAccess W2890858445 @default.
- W2890858445 hasPrimaryLocation W28908584451 @default.
- W2890858445 hasRelatedWork W1972656095 @default.
- W2890858445 hasRelatedWork W2024160000 @default.
- W2890858445 hasRelatedWork W2061273563 @default.
- W2890858445 hasRelatedWork W2285052147 @default.
- W2890858445 hasRelatedWork W2729514902 @default.
- W2890858445 hasRelatedWork W2743258233 @default.
- W2890858445 hasRelatedWork W2773500201 @default.
- W2890858445 hasRelatedWork W2970216048 @default.
- W2890858445 hasRelatedWork W2998168123 @default.
- W2890858445 hasRelatedWork W4287995534 @default.
- W2890858445 isParatext "false" @default.
- W2890858445 isRetracted "false" @default.
- W2890858445 magId "2890858445" @default.
- W2890858445 workType "book-chapter" @default.